Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's solve the equation step by step:
Given the equation:
[tex]\[ 4x^2 + 16 = -32 \][/tex]
1. Isolate the quadratic term: First, let's move the constant term on the left side to the right side by subtracting 16 from both sides of the equation:
[tex]\[ 4x^2 + 16 - 16 = -32 - 16 \][/tex]
[tex]\[ 4x^2 = -48 \][/tex]
2. Simplify: Now, we divide both sides by 4 to simplify the coefficient of \( x^2 \):
[tex]\[ x^2 = \frac{-48}{4} \][/tex]
[tex]\[ x^2 = -12 \][/tex]
3. Solve for \( x \): To find \( x \), we take the square root of both sides. Remember that taking the square root of a negative number involves imaginary numbers. Thus,
[tex]\[ x = \pm \sqrt{-12} \][/tex]
[tex]\[ x = \pm \sqrt{-1 \cdot 12} \][/tex]
[tex]\[ x = \pm \sqrt{-1} \cdot \sqrt{12} \][/tex]
Since the square root of \(-1\) is \(i\) (the imaginary unit), we get:
[tex]\[ x = \pm i \cdot \sqrt{12} \][/tex]
4. Simplify the square root of 12: The number 12 can be simplified further:
[tex]\[ \sqrt{12} = \sqrt{4 \cdot 3} = \sqrt{4} \cdot \sqrt{3} = 2 \cdot \sqrt{3} \][/tex]
Therefore,
[tex]\[ x = \pm i \cdot 2\sqrt{3} \][/tex]
So, the two solutions are:
[tex]\[ x_1 = -2i\sqrt{3} \][/tex]
[tex]\[ x_2 = 2i\sqrt{3} \][/tex]
In conclusion, the solutions to the equation \( 4x^2 + 16 = -32 \) are:
[tex]\[ x_1 = -2i\sqrt{3} \][/tex]
[tex]\[ x_2 = 2i\sqrt{3} \][/tex]
Given the equation:
[tex]\[ 4x^2 + 16 = -32 \][/tex]
1. Isolate the quadratic term: First, let's move the constant term on the left side to the right side by subtracting 16 from both sides of the equation:
[tex]\[ 4x^2 + 16 - 16 = -32 - 16 \][/tex]
[tex]\[ 4x^2 = -48 \][/tex]
2. Simplify: Now, we divide both sides by 4 to simplify the coefficient of \( x^2 \):
[tex]\[ x^2 = \frac{-48}{4} \][/tex]
[tex]\[ x^2 = -12 \][/tex]
3. Solve for \( x \): To find \( x \), we take the square root of both sides. Remember that taking the square root of a negative number involves imaginary numbers. Thus,
[tex]\[ x = \pm \sqrt{-12} \][/tex]
[tex]\[ x = \pm \sqrt{-1 \cdot 12} \][/tex]
[tex]\[ x = \pm \sqrt{-1} \cdot \sqrt{12} \][/tex]
Since the square root of \(-1\) is \(i\) (the imaginary unit), we get:
[tex]\[ x = \pm i \cdot \sqrt{12} \][/tex]
4. Simplify the square root of 12: The number 12 can be simplified further:
[tex]\[ \sqrt{12} = \sqrt{4 \cdot 3} = \sqrt{4} \cdot \sqrt{3} = 2 \cdot \sqrt{3} \][/tex]
Therefore,
[tex]\[ x = \pm i \cdot 2\sqrt{3} \][/tex]
So, the two solutions are:
[tex]\[ x_1 = -2i\sqrt{3} \][/tex]
[tex]\[ x_2 = 2i\sqrt{3} \][/tex]
In conclusion, the solutions to the equation \( 4x^2 + 16 = -32 \) are:
[tex]\[ x_1 = -2i\sqrt{3} \][/tex]
[tex]\[ x_2 = 2i\sqrt{3} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.