Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To factor the given trinomial \( 12x^2 - 7x - 5 \), we will follow a process of trial and error, observation, or using techniques like the AC method. However, let's directly go to the step-by-step solution:
1. Recognize the Trinomial: We need to factor \( 12x^2 - 7x - 5 \).
2. Find the constant and the coefficients:
- The coefficient of \(x^2\) (the leading coefficient) is 12.
- The coefficient of \(x\) is -7.
- The constant term is -5.
3. Set Up Factoring by Grouping:
- We are looking for two binomials whose product is \( 12x^2 - 7x - 5 \).
4. Factorization:
- We can write the trinomial in a factored form:
[tex]\[ 12x^2 - 7x - 5 = (ax + b)(cx + d) \][/tex]
5. Matching the Coefficients:
- After expanding \( (ax + b)(cx + d) \), you get \( acx^2 + (ad + bc)x + bd \).
- We need to find \(a\), \(b\), \(c\), and \(d\) that satisfy \( ac = 12 \), \( bd = -5 \), and \( ad + bc = -7\).
6. Using the Result:
- By analyzing the patterns, we find:
[tex]\[ (x - 1)(12x + 5) \][/tex]
7. Verification:
- We can expand to verify the result:
[tex]\[ (x - 1)(12x + 5) = x \cdot 12x + x \cdot 5 - 1 \cdot 12x - 1 \cdot 5 = 12x^2 + 5x - 12x - 5 = 12x^2 - 7x - 5 \][/tex]
So, the factorization of the trinomial \( 12x^2 - 7x - 5 \) is:
[tex]\[ \boxed{(x - 1)(12x + 5)} \][/tex]
Hence, the given trinomial [tex]\( 12x^2 - 7x - 5 \)[/tex] is factored as [tex]\( (x - 1)(12x + 5) \)[/tex].
1. Recognize the Trinomial: We need to factor \( 12x^2 - 7x - 5 \).
2. Find the constant and the coefficients:
- The coefficient of \(x^2\) (the leading coefficient) is 12.
- The coefficient of \(x\) is -7.
- The constant term is -5.
3. Set Up Factoring by Grouping:
- We are looking for two binomials whose product is \( 12x^2 - 7x - 5 \).
4. Factorization:
- We can write the trinomial in a factored form:
[tex]\[ 12x^2 - 7x - 5 = (ax + b)(cx + d) \][/tex]
5. Matching the Coefficients:
- After expanding \( (ax + b)(cx + d) \), you get \( acx^2 + (ad + bc)x + bd \).
- We need to find \(a\), \(b\), \(c\), and \(d\) that satisfy \( ac = 12 \), \( bd = -5 \), and \( ad + bc = -7\).
6. Using the Result:
- By analyzing the patterns, we find:
[tex]\[ (x - 1)(12x + 5) \][/tex]
7. Verification:
- We can expand to verify the result:
[tex]\[ (x - 1)(12x + 5) = x \cdot 12x + x \cdot 5 - 1 \cdot 12x - 1 \cdot 5 = 12x^2 + 5x - 12x - 5 = 12x^2 - 7x - 5 \][/tex]
So, the factorization of the trinomial \( 12x^2 - 7x - 5 \) is:
[tex]\[ \boxed{(x - 1)(12x + 5)} \][/tex]
Hence, the given trinomial [tex]\( 12x^2 - 7x - 5 \)[/tex] is factored as [tex]\( (x - 1)(12x + 5) \)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.