At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which set contains an irrational number, let's evaluate each set individually.
### Set 1: \(\{2300, 0.48, \frac{13}{1}\}\)
- \(2300\) is an integer and hence a rational number.
- \(0.48\) is a decimal that can be written as \(\frac{48}{100} = \frac{12}{25}\), which is a rational number.
- \(\frac{13}{1} = 13\), which is an integer and therefore a rational number.
This set contains only rational numbers.
### Set 2: \(\{18, 0.1, \frac{12}{5}\}\)
- \(18\) is an integer and hence a rational number.
- \(0.1\) is a decimal that can be written as \(\frac{1}{10}\), which is a rational number.
- \(\frac{12}{5}\) is a ratio of two integers, making it a rational number.
This set contains only rational numbers.
### Set 3: \(\{\frac{3}{8}, 4, \sqrt{52}\}\)
- \(\frac{3}{8}\) is a ratio of two integers, which makes it a rational number.
- \(4\) is an integer and hence a rational number.
- \(\sqrt{52}\) is not a perfect square. Rational numbers have square roots that are either integers (if they are perfect squares) or irrational numbers (if they are not perfect squares).
- \(\sqrt{52} = \sqrt{4 \times 13} = 2 \sqrt{13}\). Since \(\sqrt{13}\) is an irrational number, \(\sqrt{52}\) must be irrational as well.
This set contains an irrational number, \(\sqrt{52}\).
### Set 4: \(\{0.333 \ldots, \sqrt{4}, 10\}\)
- \(0.333 \ldots\) (repeating 3s) is a repeating decimal that can be written as \(\frac{1}{3}\), which is a rational number.
- \(\sqrt{4} = 2\), which is an integer and therefore a rational number.
- \(10\) is an integer and hence a rational number.
This set contains only rational numbers.
### Conclusion
Based on the analysis, the set containing an irrational number is:
[tex]\[ \{\frac{3}{8}, 4, \sqrt{52}\} \][/tex]
### Set 1: \(\{2300, 0.48, \frac{13}{1}\}\)
- \(2300\) is an integer and hence a rational number.
- \(0.48\) is a decimal that can be written as \(\frac{48}{100} = \frac{12}{25}\), which is a rational number.
- \(\frac{13}{1} = 13\), which is an integer and therefore a rational number.
This set contains only rational numbers.
### Set 2: \(\{18, 0.1, \frac{12}{5}\}\)
- \(18\) is an integer and hence a rational number.
- \(0.1\) is a decimal that can be written as \(\frac{1}{10}\), which is a rational number.
- \(\frac{12}{5}\) is a ratio of two integers, making it a rational number.
This set contains only rational numbers.
### Set 3: \(\{\frac{3}{8}, 4, \sqrt{52}\}\)
- \(\frac{3}{8}\) is a ratio of two integers, which makes it a rational number.
- \(4\) is an integer and hence a rational number.
- \(\sqrt{52}\) is not a perfect square. Rational numbers have square roots that are either integers (if they are perfect squares) or irrational numbers (if they are not perfect squares).
- \(\sqrt{52} = \sqrt{4 \times 13} = 2 \sqrt{13}\). Since \(\sqrt{13}\) is an irrational number, \(\sqrt{52}\) must be irrational as well.
This set contains an irrational number, \(\sqrt{52}\).
### Set 4: \(\{0.333 \ldots, \sqrt{4}, 10\}\)
- \(0.333 \ldots\) (repeating 3s) is a repeating decimal that can be written as \(\frac{1}{3}\), which is a rational number.
- \(\sqrt{4} = 2\), which is an integer and therefore a rational number.
- \(10\) is an integer and hence a rational number.
This set contains only rational numbers.
### Conclusion
Based on the analysis, the set containing an irrational number is:
[tex]\[ \{\frac{3}{8}, 4, \sqrt{52}\} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.