Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Ask your questions and receive precise answers from experienced professionals across different disciplines. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Certainly! Let's go through the steps to solve the given expression \(4x^{10} - 64x^2\).
### Part A: Factoring Out the Greatest Common Factor (GCF)
To begin, we need to determine the greatest common factor (GCF) of the terms \(4x^{10}\) and \(64x^2\).
1. Identify the GCF of the coefficients:
- The coefficients are 4 and 64.
- The GCF of 4 and 64 is 4.
2. Identify the GCF of the variable terms:
- The variable terms are \(x^{10}\) and \(x^2\).
- The GCF of \(x^{10}\) and \(x^2\) is \(x^2\).
Therefore, the GCF of the entire expression is \(4x^2\).
3. Factor out the GCF from each term:
- When you factor \(4x^2\) out of \(4x^{10}\), you are left with \(x^8\).
- When you factor \(4x^2\) out of \(64x^2\), you are left with 16.
Putting this together, we rewrite the expression as:
[tex]\[ 4x^{10} - 64x^2 = 4x^2 (x^8 - 16) \][/tex]
Thus, for Part A, the expression \(4x^{10} - 64x^2\) when factored out by the GCF is:
[tex]\[ 4x^2 (x^8 - 16) \][/tex]
### Part B: Factoring the Entire Expression Completely
Now, we need to factor \(x^8 - 16\) completely using the appropriate factoring techniques. The expression \(x^8 - 16\) is a difference of squares.
1. Recognize that \(x^8 - 16\) is a difference of squares:
[tex]\[ x^8 - 16 = (x^4)^2 - (4)^2 \][/tex]
- This can be written as:
[tex]\[ (x^4 - 4)(x^4 + 4) \][/tex]
2. Factor \(x^4 - 4\) further using the difference of squares formula:
- Notice that \(x^4 - 4\) is again a difference of squares:
[tex]\[ x^4 - 4 = (x^2)^2 - (2)^2 \][/tex]
- This can be factored as:
[tex]\[ (x^2 - 2)(x^2 + 2) \][/tex]
Putting everything together, we have:
[tex]\[ x^8 - 16 = (x^4 - 4)(x^4 + 4) = (x^2 - 2)(x^2 + 2)(x^4 + 4) \][/tex]
Thus, the entire expression \(4x^2 (x^8 - 16)\) completely factored is:
[tex]\[ 4x^2 (x^2 - 2)(x^2 + 2)(x^4 + 4) \][/tex]
### Final Answer:
- Part A: The expression \(4x^{10} - 64x^2\) factors with the GCF as \(4x^2 (x^8 - 16)\).
- Part B: The completely factored form of the expression is [tex]\(4x^2 (x^2 - 2)(x^2 + 2)(x^4 + 4)\)[/tex].
### Part A: Factoring Out the Greatest Common Factor (GCF)
To begin, we need to determine the greatest common factor (GCF) of the terms \(4x^{10}\) and \(64x^2\).
1. Identify the GCF of the coefficients:
- The coefficients are 4 and 64.
- The GCF of 4 and 64 is 4.
2. Identify the GCF of the variable terms:
- The variable terms are \(x^{10}\) and \(x^2\).
- The GCF of \(x^{10}\) and \(x^2\) is \(x^2\).
Therefore, the GCF of the entire expression is \(4x^2\).
3. Factor out the GCF from each term:
- When you factor \(4x^2\) out of \(4x^{10}\), you are left with \(x^8\).
- When you factor \(4x^2\) out of \(64x^2\), you are left with 16.
Putting this together, we rewrite the expression as:
[tex]\[ 4x^{10} - 64x^2 = 4x^2 (x^8 - 16) \][/tex]
Thus, for Part A, the expression \(4x^{10} - 64x^2\) when factored out by the GCF is:
[tex]\[ 4x^2 (x^8 - 16) \][/tex]
### Part B: Factoring the Entire Expression Completely
Now, we need to factor \(x^8 - 16\) completely using the appropriate factoring techniques. The expression \(x^8 - 16\) is a difference of squares.
1. Recognize that \(x^8 - 16\) is a difference of squares:
[tex]\[ x^8 - 16 = (x^4)^2 - (4)^2 \][/tex]
- This can be written as:
[tex]\[ (x^4 - 4)(x^4 + 4) \][/tex]
2. Factor \(x^4 - 4\) further using the difference of squares formula:
- Notice that \(x^4 - 4\) is again a difference of squares:
[tex]\[ x^4 - 4 = (x^2)^2 - (2)^2 \][/tex]
- This can be factored as:
[tex]\[ (x^2 - 2)(x^2 + 2) \][/tex]
Putting everything together, we have:
[tex]\[ x^8 - 16 = (x^4 - 4)(x^4 + 4) = (x^2 - 2)(x^2 + 2)(x^4 + 4) \][/tex]
Thus, the entire expression \(4x^2 (x^8 - 16)\) completely factored is:
[tex]\[ 4x^2 (x^2 - 2)(x^2 + 2)(x^4 + 4) \][/tex]
### Final Answer:
- Part A: The expression \(4x^{10} - 64x^2\) factors with the GCF as \(4x^2 (x^8 - 16)\).
- Part B: The completely factored form of the expression is [tex]\(4x^2 (x^2 - 2)(x^2 + 2)(x^4 + 4)\)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.