Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Answer:
The negative root is between -3 and -2.
Step-by-step explanation:
The roots of a quadratic equation are the x values that make y zero, that is, the places where the graph intersects the x axis. There are two roots, the negative perhaps -2.5 and the positive between 1 and 1.5. So, the negative root is between -3 and -2.
Answer:
Step-by-step explanation:
bsolutely, let's graph the function and analyze the roots:
Graphing the function:
Go to your graphing calculator and access the function mode (usually by pressing the "Y=" key or a similar function button).
Enter the function equation: f(x) = 5x^2 + 6x - 17
Set the viewing window to a range that allows you to see the behavior of the parabola clearly. A good starting point could be something like Xmin=-5, Xmax=5, Ymin=-30, Ymax=30 (this can be adjusted based on the calculator's output).
Graph the function.
Analyzing the Roots:
By looking at the graph of the function, we can determine the following about the roots:
The parabola intersects the x-axis at two points, indicating there are two roots.
Using the calculator to find the exact roots:
Most graphing calculators have a feature to find the roots or zeros of a function. Look for a function like "ZERO" or "X-solve." Following the specific instructions for your calculator model, you can find the exact values of the roots.
Common calculator methods to find roots:
TI-84 series: Press "2nd," then "CALC," and choose "ZERO." Enter the function expression f(x) and press ENTER a few times to see both roots.
Casio fx-series: Press "SHIFT" and "CALC," then select "0" (Zero). Enter the function expression f(x) and press ENTER a few times to see both roots.
Once you have the exact root values, you can determine which statement is true based on their location.
In conclusion, analyzing the graph or using the calculator to find the exact roots will reveal that the statement about the roots being between 0 and 1 is not necessarily true. There might be other possibilities depending on the specific values of the roots.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.