Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's break it down step-by-step:
1. Given Information:
- Volume of the cone, \(V_{\text{cone}} = 50\pi \) cubic inches.
- Diameter of the cone, \( d = 10 \) inches.
- Radius of the cone (and hence the cylinder, since the diameter is the same), \( r = \frac{10}{2} = 5 \) inches.
2. Volume Formula for a Cone:
The volume \( V_{\text{cone}} \) of a cone is given by:
[tex]\[ V_{\text{cone}} = \frac{1}{3} \pi r^2 h \][/tex]
- We know \( V_{\text{cone}} = 50\pi \) cubic inches and \( r = 5 \) inches.
- Let's solve for \( h \) (height of the cone):
[tex]\[ 50\pi = \frac{1}{3} \pi (5)^2 h \][/tex]
[tex]\[ 50 = \frac{1}{3} (25) h \][/tex]
[tex]\[ 50 = \frac{25}{3} h \][/tex]
[tex]\[ 50 \cdot 3 = 25 h \][/tex]
[tex]\[ 150 = 25 h \][/tex]
[tex]\[ h = \frac{150}{25} = 6 \text{ inches} \][/tex]
- So the height of the cone is \( 6 \) inches.
3. Volume Formula for a Cylinder:
The volume \( V_{\text{cylinder}} \) of a cylinder is given by:
[tex]\[ V_{\text{cylinder}} = \pi r^2 h \][/tex]
- Let's analyze the given options based on this formula.
4. Evaluating the Choices:
- Option A: A cylinder with \( h = 2 \) inches and \( d = 10 \) inches.
[tex]\[ r = 5 \text{ inches} \][/tex]
[tex]\[ V_{\text{cylinder}} = \pi (5)^2 (2) = 50\pi \text{ cubic inches} \][/tex]
- This matches the volume of the cone. Therefore, the statement is Wilson is correct for this option.
- Option B: A cylinder with \( h = 6 \) inches and \( d = 10 \) inches.
[tex]\[ r = 5 \text{ inches} \][/tex]
[tex]\[ V_{\text{cylinder}} = \pi (5)^2 (6) = 150\pi \text{ cubic inches} \][/tex]
- This volume does not match the volume of the cone. Therefore, the statement is Wilson is incorrect for this option.
- Option C: This option conflicts with valid mathematical principles, as it isn't a controlled comparison based on cone characteristics.
- Statement is confusing and incorrect.
- Option D: Repeats option B's argument with correct math.
[tex]\[ V_{\text{cylinder}} = 150\pi \text{ cubic inches} \][/tex]
- Therefore, the statement is Wilson is incorrect for this option.
Based on the evaluation, the correct choice that matches the context of the problem is:
D. A cylinder in which \( h = 6 \) inches and \( d = 10 \) inches has a volume of \( 150\pi \) cubic inches, therefore, Wilson is incorrect.
Therefore, the correct answer is:
4.
1. Given Information:
- Volume of the cone, \(V_{\text{cone}} = 50\pi \) cubic inches.
- Diameter of the cone, \( d = 10 \) inches.
- Radius of the cone (and hence the cylinder, since the diameter is the same), \( r = \frac{10}{2} = 5 \) inches.
2. Volume Formula for a Cone:
The volume \( V_{\text{cone}} \) of a cone is given by:
[tex]\[ V_{\text{cone}} = \frac{1}{3} \pi r^2 h \][/tex]
- We know \( V_{\text{cone}} = 50\pi \) cubic inches and \( r = 5 \) inches.
- Let's solve for \( h \) (height of the cone):
[tex]\[ 50\pi = \frac{1}{3} \pi (5)^2 h \][/tex]
[tex]\[ 50 = \frac{1}{3} (25) h \][/tex]
[tex]\[ 50 = \frac{25}{3} h \][/tex]
[tex]\[ 50 \cdot 3 = 25 h \][/tex]
[tex]\[ 150 = 25 h \][/tex]
[tex]\[ h = \frac{150}{25} = 6 \text{ inches} \][/tex]
- So the height of the cone is \( 6 \) inches.
3. Volume Formula for a Cylinder:
The volume \( V_{\text{cylinder}} \) of a cylinder is given by:
[tex]\[ V_{\text{cylinder}} = \pi r^2 h \][/tex]
- Let's analyze the given options based on this formula.
4. Evaluating the Choices:
- Option A: A cylinder with \( h = 2 \) inches and \( d = 10 \) inches.
[tex]\[ r = 5 \text{ inches} \][/tex]
[tex]\[ V_{\text{cylinder}} = \pi (5)^2 (2) = 50\pi \text{ cubic inches} \][/tex]
- This matches the volume of the cone. Therefore, the statement is Wilson is correct for this option.
- Option B: A cylinder with \( h = 6 \) inches and \( d = 10 \) inches.
[tex]\[ r = 5 \text{ inches} \][/tex]
[tex]\[ V_{\text{cylinder}} = \pi (5)^2 (6) = 150\pi \text{ cubic inches} \][/tex]
- This volume does not match the volume of the cone. Therefore, the statement is Wilson is incorrect for this option.
- Option C: This option conflicts with valid mathematical principles, as it isn't a controlled comparison based on cone characteristics.
- Statement is confusing and incorrect.
- Option D: Repeats option B's argument with correct math.
[tex]\[ V_{\text{cylinder}} = 150\pi \text{ cubic inches} \][/tex]
- Therefore, the statement is Wilson is incorrect for this option.
Based on the evaluation, the correct choice that matches the context of the problem is:
D. A cylinder in which \( h = 6 \) inches and \( d = 10 \) inches has a volume of \( 150\pi \) cubic inches, therefore, Wilson is incorrect.
Therefore, the correct answer is:
4.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.