Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the amount of heat released during the combustion of the sample of octane, we use the formula for heat transfer:
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
where:
- \( q \) is the heat released,
- \( m \) is the mass of the calorimeter,
- \( C_p \) is the specific heat capacity of the calorimeter,
- \( \Delta T \) is the change in temperature.
Given:
- Mass of the calorimeter, \( m = 1.00 \text{ kg} \) (which needs to be converted to grams since specific heat is given in \( J/(g \cdot °C) \)),
- Specific heat capacity of the calorimeter, \( C_p = 1.50 \text{ J/(g} \cdot °C) \),
- Initial temperature, \( T_i = 21.0 °C \),
- Final temperature, \( T_f = 41.0 °C \).
Step 1: Convert the mass of the calorimeter to grams:
[tex]\[ 1.00 \text{ kg} = 1000.0 \text{ g} \][/tex]
Step 2: Calculate the temperature change, \( \Delta T \):
[tex]\[ \Delta T = T_f - T_i = 41.0 °C - 21.0 °C = 20.0 °C \][/tex]
Step 3: Calculate the heat released, \( q \):
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
[tex]\[ q = 1000.0 \text{ g} \cdot 1.50 \text{ J/(g} \cdot °C) \cdot 20.0 °C \][/tex]
[tex]\[ q = 1000 \cdot 1.50 \cdot 20.0 \text{ J} \][/tex]
[tex]\[ q = 30000.0 \text{ J} \][/tex]
Step 4: Convert the heat released from Joules to kilojoules:
[tex]\[ q_{kJ} = \frac{q}{1000} \][/tex]
[tex]\[ q_{kJ} = \frac{30000.0 \text{ J}}{1000} \][/tex]
[tex]\[ q_{kJ} = 30.0 \text{ kJ} \][/tex]
Therefore, the amount of heat released during the combustion of the sample is \( 30.0 \text{ kJ} \).
The correct answer is [tex]\( \boxed{30.0 \text{ kJ}} \)[/tex].
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
where:
- \( q \) is the heat released,
- \( m \) is the mass of the calorimeter,
- \( C_p \) is the specific heat capacity of the calorimeter,
- \( \Delta T \) is the change in temperature.
Given:
- Mass of the calorimeter, \( m = 1.00 \text{ kg} \) (which needs to be converted to grams since specific heat is given in \( J/(g \cdot °C) \)),
- Specific heat capacity of the calorimeter, \( C_p = 1.50 \text{ J/(g} \cdot °C) \),
- Initial temperature, \( T_i = 21.0 °C \),
- Final temperature, \( T_f = 41.0 °C \).
Step 1: Convert the mass of the calorimeter to grams:
[tex]\[ 1.00 \text{ kg} = 1000.0 \text{ g} \][/tex]
Step 2: Calculate the temperature change, \( \Delta T \):
[tex]\[ \Delta T = T_f - T_i = 41.0 °C - 21.0 °C = 20.0 °C \][/tex]
Step 3: Calculate the heat released, \( q \):
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
[tex]\[ q = 1000.0 \text{ g} \cdot 1.50 \text{ J/(g} \cdot °C) \cdot 20.0 °C \][/tex]
[tex]\[ q = 1000 \cdot 1.50 \cdot 20.0 \text{ J} \][/tex]
[tex]\[ q = 30000.0 \text{ J} \][/tex]
Step 4: Convert the heat released from Joules to kilojoules:
[tex]\[ q_{kJ} = \frac{q}{1000} \][/tex]
[tex]\[ q_{kJ} = \frac{30000.0 \text{ J}}{1000} \][/tex]
[tex]\[ q_{kJ} = 30.0 \text{ kJ} \][/tex]
Therefore, the amount of heat released during the combustion of the sample is \( 30.0 \text{ kJ} \).
The correct answer is [tex]\( \boxed{30.0 \text{ kJ}} \)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.