At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine how many years it will take for the price of electricity per kilowatt-hour to reach [tex]$0.10$[/tex], we need to create an equation using the information given.
In 1979, the initial price of electricity was $0.05 per kilowatt-hour. This price increases annually at a rate of 2.05%. The general formula to calculate compound interest over time is:
[tex]\[ c = A(b)^t \][/tex]
where:
- \( c \) is the future price, which, in this case, is $0.10.
- \( A \) is the initial price, which was $0.05 in 1979.
- \( b \) is the growth (or increase) factor, and is calculated as \( 1 + \frac{2.05}{100} \).
- \( t \) is the number of years after 1979.
Let's break down the components \( b \) and \( A \):
1. The initial price \( A \) is:
[tex]\[ A = 0.05 \][/tex]
2. The annual growth rate is 2.05%, which as a decimal is 0.0205. Therefore, the growth factor \( b \) is:
[tex]\[ b = 1 + 0.0205 = 1.0205 \][/tex]
Thus, the values for the variables are:
[tex]\[ b = 1.0205 \][/tex]
[tex]\[ A = 0.05 \][/tex]
So the equation to determine how many years it will take for the price to reach $0.10 is:
[tex]\[ 0.10 = 0.05 (1.0205)^t \][/tex]
These results give us the values of \( b \) and \( A \) (or \( c \)) for the situation described:
[tex]\[ b = 1.0205 \][/tex]
[tex]\[ A = 0.05 \][/tex]
In 1979, the initial price of electricity was $0.05 per kilowatt-hour. This price increases annually at a rate of 2.05%. The general formula to calculate compound interest over time is:
[tex]\[ c = A(b)^t \][/tex]
where:
- \( c \) is the future price, which, in this case, is $0.10.
- \( A \) is the initial price, which was $0.05 in 1979.
- \( b \) is the growth (or increase) factor, and is calculated as \( 1 + \frac{2.05}{100} \).
- \( t \) is the number of years after 1979.
Let's break down the components \( b \) and \( A \):
1. The initial price \( A \) is:
[tex]\[ A = 0.05 \][/tex]
2. The annual growth rate is 2.05%, which as a decimal is 0.0205. Therefore, the growth factor \( b \) is:
[tex]\[ b = 1 + 0.0205 = 1.0205 \][/tex]
Thus, the values for the variables are:
[tex]\[ b = 1.0205 \][/tex]
[tex]\[ A = 0.05 \][/tex]
So the equation to determine how many years it will take for the price to reach $0.10 is:
[tex]\[ 0.10 = 0.05 (1.0205)^t \][/tex]
These results give us the values of \( b \) and \( A \) (or \( c \)) for the situation described:
[tex]\[ b = 1.0205 \][/tex]
[tex]\[ A = 0.05 \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.