Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the area of the triangle, we need to follow these steps:
1. Identify the given information:
- Side \( a = 10 \) inches
- Side \( b = 18 \) inches
- Perimeter \( P = 42 \) inches
2. Determine the length of the third side \( c \):
- The perimeter formula for a triangle is \( P = a + b + c \).
- Rearranging to find \( c \), we get \( c = P - (a + b) \).
- So, \( c = 42 - (10 + 18) = 42 - 28 = 14 \) inches.
3. Calculate the semi-perimeter \( s \):
- The semi-perimeter \( s \) is half of the perimeter.
- \( s = \frac{P}{2} = \frac{42}{2} = 21 \) inches.
4. Use Heron's formula to find the area \( A \):
- Heron's formula states \( A = \sqrt{s(s-a)(s-b)(s-c)} \).
- Substituting the values, we have:
[tex]\[ A = \sqrt{21(21-10)(21-18)(21-14)} = \sqrt{21 \times 11 \times 3 \times 7} \][/tex]
5. Calculate the value inside the square root:
- Calculate \( 21 \times 11 = 231 \)
- Then \( 231 \times 3 = 693 \)
- Finally \( 693 \times 7 = 4851 \)
6. Take the square root of the product:
- \( A = \sqrt{4851} \approx 69.65 \)
Therefore, the area of the triangle is approximately \( 69.65 \) square inches.
The correct answer is:
B. [tex]\( 69.65 \text{ in}^2 \)[/tex]
1. Identify the given information:
- Side \( a = 10 \) inches
- Side \( b = 18 \) inches
- Perimeter \( P = 42 \) inches
2. Determine the length of the third side \( c \):
- The perimeter formula for a triangle is \( P = a + b + c \).
- Rearranging to find \( c \), we get \( c = P - (a + b) \).
- So, \( c = 42 - (10 + 18) = 42 - 28 = 14 \) inches.
3. Calculate the semi-perimeter \( s \):
- The semi-perimeter \( s \) is half of the perimeter.
- \( s = \frac{P}{2} = \frac{42}{2} = 21 \) inches.
4. Use Heron's formula to find the area \( A \):
- Heron's formula states \( A = \sqrt{s(s-a)(s-b)(s-c)} \).
- Substituting the values, we have:
[tex]\[ A = \sqrt{21(21-10)(21-18)(21-14)} = \sqrt{21 \times 11 \times 3 \times 7} \][/tex]
5. Calculate the value inside the square root:
- Calculate \( 21 \times 11 = 231 \)
- Then \( 231 \times 3 = 693 \)
- Finally \( 693 \times 7 = 4851 \)
6. Take the square root of the product:
- \( A = \sqrt{4851} \approx 69.65 \)
Therefore, the area of the triangle is approximately \( 69.65 \) square inches.
The correct answer is:
B. [tex]\( 69.65 \text{ in}^2 \)[/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.