Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the area of the triangle, we need to follow these steps:
1. Identify the given information:
- Side \( a = 10 \) inches
- Side \( b = 18 \) inches
- Perimeter \( P = 42 \) inches
2. Determine the length of the third side \( c \):
- The perimeter formula for a triangle is \( P = a + b + c \).
- Rearranging to find \( c \), we get \( c = P - (a + b) \).
- So, \( c = 42 - (10 + 18) = 42 - 28 = 14 \) inches.
3. Calculate the semi-perimeter \( s \):
- The semi-perimeter \( s \) is half of the perimeter.
- \( s = \frac{P}{2} = \frac{42}{2} = 21 \) inches.
4. Use Heron's formula to find the area \( A \):
- Heron's formula states \( A = \sqrt{s(s-a)(s-b)(s-c)} \).
- Substituting the values, we have:
[tex]\[ A = \sqrt{21(21-10)(21-18)(21-14)} = \sqrt{21 \times 11 \times 3 \times 7} \][/tex]
5. Calculate the value inside the square root:
- Calculate \( 21 \times 11 = 231 \)
- Then \( 231 \times 3 = 693 \)
- Finally \( 693 \times 7 = 4851 \)
6. Take the square root of the product:
- \( A = \sqrt{4851} \approx 69.65 \)
Therefore, the area of the triangle is approximately \( 69.65 \) square inches.
The correct answer is:
B. [tex]\( 69.65 \text{ in}^2 \)[/tex]
1. Identify the given information:
- Side \( a = 10 \) inches
- Side \( b = 18 \) inches
- Perimeter \( P = 42 \) inches
2. Determine the length of the third side \( c \):
- The perimeter formula for a triangle is \( P = a + b + c \).
- Rearranging to find \( c \), we get \( c = P - (a + b) \).
- So, \( c = 42 - (10 + 18) = 42 - 28 = 14 \) inches.
3. Calculate the semi-perimeter \( s \):
- The semi-perimeter \( s \) is half of the perimeter.
- \( s = \frac{P}{2} = \frac{42}{2} = 21 \) inches.
4. Use Heron's formula to find the area \( A \):
- Heron's formula states \( A = \sqrt{s(s-a)(s-b)(s-c)} \).
- Substituting the values, we have:
[tex]\[ A = \sqrt{21(21-10)(21-18)(21-14)} = \sqrt{21 \times 11 \times 3 \times 7} \][/tex]
5. Calculate the value inside the square root:
- Calculate \( 21 \times 11 = 231 \)
- Then \( 231 \times 3 = 693 \)
- Finally \( 693 \times 7 = 4851 \)
6. Take the square root of the product:
- \( A = \sqrt{4851} \approx 69.65 \)
Therefore, the area of the triangle is approximately \( 69.65 \) square inches.
The correct answer is:
B. [tex]\( 69.65 \text{ in}^2 \)[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.