Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the 22nd term of the arithmetic sequence where \( a_1 = 8 \) and \( a_9 = 56 \), we need to follow these steps:
1. Understand the General Formula:
In an arithmetic sequence, the \( n \)-th term \( a_n \) can be found using the formula:
[tex]\[ a_n = a_1 + (n-1) \cdot d \][/tex]
where \( d \) is the common difference.
2. Identify Known Values:
In this problem, we are given:
- The first term: \( a_1 = 8 \)
- The ninth term: \( a_9 = 56 \)
3. Set Up the Equation for the Ninth Term:
Using the general formula for the ninth term:
[tex]\[ a_9 = a_1 + (9-1) \cdot d \][/tex]
Substituting the known values:
[tex]\[ 56 = 8 + 8d \][/tex]
4. Solve for the Common Difference \( d \):
Simplify the equation:
[tex]\[ 56 = 8 + 8d \][/tex]
Subtract 8 from both sides:
[tex]\[ 48 = 8d \][/tex]
Divide both sides by 8:
[tex]\[ d = 6 \][/tex]
5. Find the 22nd Term:
Now that we know the common difference \( d \), we can find the 22nd term \( a_{22} \).
Using the general formula for the 22nd term:
[tex]\[ a_{22} = a_1 + (22-1) \cdot d \][/tex]
Substitute the known values:
[tex]\[ a_{22} = 8 + 21 \cdot 6 \][/tex]
Calculate \( 21 \cdot 6 \):
[tex]\[ 21 \cdot 6 = 126 \][/tex]
Add this to the first term:
[tex]\[ a_{22} = 8 + 126 = 134 \][/tex]
Thus, the 22nd term of the arithmetic sequence is [tex]\(\boxed{134}\)[/tex].
1. Understand the General Formula:
In an arithmetic sequence, the \( n \)-th term \( a_n \) can be found using the formula:
[tex]\[ a_n = a_1 + (n-1) \cdot d \][/tex]
where \( d \) is the common difference.
2. Identify Known Values:
In this problem, we are given:
- The first term: \( a_1 = 8 \)
- The ninth term: \( a_9 = 56 \)
3. Set Up the Equation for the Ninth Term:
Using the general formula for the ninth term:
[tex]\[ a_9 = a_1 + (9-1) \cdot d \][/tex]
Substituting the known values:
[tex]\[ 56 = 8 + 8d \][/tex]
4. Solve for the Common Difference \( d \):
Simplify the equation:
[tex]\[ 56 = 8 + 8d \][/tex]
Subtract 8 from both sides:
[tex]\[ 48 = 8d \][/tex]
Divide both sides by 8:
[tex]\[ d = 6 \][/tex]
5. Find the 22nd Term:
Now that we know the common difference \( d \), we can find the 22nd term \( a_{22} \).
Using the general formula for the 22nd term:
[tex]\[ a_{22} = a_1 + (22-1) \cdot d \][/tex]
Substitute the known values:
[tex]\[ a_{22} = 8 + 21 \cdot 6 \][/tex]
Calculate \( 21 \cdot 6 \):
[tex]\[ 21 \cdot 6 = 126 \][/tex]
Add this to the first term:
[tex]\[ a_{22} = 8 + 126 = 134 \][/tex]
Thus, the 22nd term of the arithmetic sequence is [tex]\(\boxed{134}\)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.