Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the 22nd term of the arithmetic sequence where \( a_1 = 8 \) and \( a_9 = 56 \), we need to follow these steps:
1. Understand the General Formula:
In an arithmetic sequence, the \( n \)-th term \( a_n \) can be found using the formula:
[tex]\[ a_n = a_1 + (n-1) \cdot d \][/tex]
where \( d \) is the common difference.
2. Identify Known Values:
In this problem, we are given:
- The first term: \( a_1 = 8 \)
- The ninth term: \( a_9 = 56 \)
3. Set Up the Equation for the Ninth Term:
Using the general formula for the ninth term:
[tex]\[ a_9 = a_1 + (9-1) \cdot d \][/tex]
Substituting the known values:
[tex]\[ 56 = 8 + 8d \][/tex]
4. Solve for the Common Difference \( d \):
Simplify the equation:
[tex]\[ 56 = 8 + 8d \][/tex]
Subtract 8 from both sides:
[tex]\[ 48 = 8d \][/tex]
Divide both sides by 8:
[tex]\[ d = 6 \][/tex]
5. Find the 22nd Term:
Now that we know the common difference \( d \), we can find the 22nd term \( a_{22} \).
Using the general formula for the 22nd term:
[tex]\[ a_{22} = a_1 + (22-1) \cdot d \][/tex]
Substitute the known values:
[tex]\[ a_{22} = 8 + 21 \cdot 6 \][/tex]
Calculate \( 21 \cdot 6 \):
[tex]\[ 21 \cdot 6 = 126 \][/tex]
Add this to the first term:
[tex]\[ a_{22} = 8 + 126 = 134 \][/tex]
Thus, the 22nd term of the arithmetic sequence is [tex]\(\boxed{134}\)[/tex].
1. Understand the General Formula:
In an arithmetic sequence, the \( n \)-th term \( a_n \) can be found using the formula:
[tex]\[ a_n = a_1 + (n-1) \cdot d \][/tex]
where \( d \) is the common difference.
2. Identify Known Values:
In this problem, we are given:
- The first term: \( a_1 = 8 \)
- The ninth term: \( a_9 = 56 \)
3. Set Up the Equation for the Ninth Term:
Using the general formula for the ninth term:
[tex]\[ a_9 = a_1 + (9-1) \cdot d \][/tex]
Substituting the known values:
[tex]\[ 56 = 8 + 8d \][/tex]
4. Solve for the Common Difference \( d \):
Simplify the equation:
[tex]\[ 56 = 8 + 8d \][/tex]
Subtract 8 from both sides:
[tex]\[ 48 = 8d \][/tex]
Divide both sides by 8:
[tex]\[ d = 6 \][/tex]
5. Find the 22nd Term:
Now that we know the common difference \( d \), we can find the 22nd term \( a_{22} \).
Using the general formula for the 22nd term:
[tex]\[ a_{22} = a_1 + (22-1) \cdot d \][/tex]
Substitute the known values:
[tex]\[ a_{22} = 8 + 21 \cdot 6 \][/tex]
Calculate \( 21 \cdot 6 \):
[tex]\[ 21 \cdot 6 = 126 \][/tex]
Add this to the first term:
[tex]\[ a_{22} = 8 + 126 = 134 \][/tex]
Thus, the 22nd term of the arithmetic sequence is [tex]\(\boxed{134}\)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.