Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's consider the given equation \(2y - 4x = 12\).
First, let’s solve this equation for \(y\) in terms of \(x\):
[tex]\[ 2y - 4x = 12 \][/tex]
[tex]\[ 2y = 4x + 12 \][/tex]
[tex]\[ y = 2x + 6 \][/tex]
Hence, the slope of the given equation \(y = 2x + 6\) is \(2\).
Now we need to determine the slopes of the provided equations and see which one forms a system with exactly one solution with the given equation. Remember, for two lines to intersect at one point, they must have different slopes.
Let’s analyze each provided equation:
1. Equation: \(-y - 2x = 6\)
Rewrite in slope-intercept form:
[tex]\[ -y - 2x = 6 \][/tex]
[tex]\[ -y = 2x + 6 \][/tex]
[tex]\[ y = -2x - 6 \][/tex]
The slope here is \(-2\).
2. Equation: \(-y + 2x = 12\)
Rewrite in slope-intercept form:
[tex]\[ -y + 2x = 12 \][/tex]
[tex]\[ -y = -2x + 12 \][/tex]
[tex]\[ y = 2x - 12 \][/tex]
The slope here is \(2\).
3. Equation: \(y = 2x + 6\)
This equation is already in slope-intercept form:
[tex]\[ y = 2x + 6 \][/tex]
The slope here is \(2\).
4. Equation: \(y = 2x + 12\)
This equation is also in slope-intercept form:
[tex]\[ y = 2x + 12 \][/tex]
The slope here is \(2\).
Now, comparing the slopes of the provided equations with the slope of the given equation:
- Equation 1 has slope \(-2\) which is different from \(2\).
- Equation 2 has slope \(2\) which is the same as the given equation.
- Equation 3 has slope \(2\) which is the same as the given equation.
- Equation 4 has slope \(2\) which is the same as the given equation.
Since only Equation 1 (\(-y - 2x = 6\)) has a different slope from the given equation \(2y - 4x = 12\), it will intersect with the given equation at exactly one point, forming a system with one solution.
Therefore, the equation is:
[tex]\[ -y - 2x = 6 \][/tex]
First, let’s solve this equation for \(y\) in terms of \(x\):
[tex]\[ 2y - 4x = 12 \][/tex]
[tex]\[ 2y = 4x + 12 \][/tex]
[tex]\[ y = 2x + 6 \][/tex]
Hence, the slope of the given equation \(y = 2x + 6\) is \(2\).
Now we need to determine the slopes of the provided equations and see which one forms a system with exactly one solution with the given equation. Remember, for two lines to intersect at one point, they must have different slopes.
Let’s analyze each provided equation:
1. Equation: \(-y - 2x = 6\)
Rewrite in slope-intercept form:
[tex]\[ -y - 2x = 6 \][/tex]
[tex]\[ -y = 2x + 6 \][/tex]
[tex]\[ y = -2x - 6 \][/tex]
The slope here is \(-2\).
2. Equation: \(-y + 2x = 12\)
Rewrite in slope-intercept form:
[tex]\[ -y + 2x = 12 \][/tex]
[tex]\[ -y = -2x + 12 \][/tex]
[tex]\[ y = 2x - 12 \][/tex]
The slope here is \(2\).
3. Equation: \(y = 2x + 6\)
This equation is already in slope-intercept form:
[tex]\[ y = 2x + 6 \][/tex]
The slope here is \(2\).
4. Equation: \(y = 2x + 12\)
This equation is also in slope-intercept form:
[tex]\[ y = 2x + 12 \][/tex]
The slope here is \(2\).
Now, comparing the slopes of the provided equations with the slope of the given equation:
- Equation 1 has slope \(-2\) which is different from \(2\).
- Equation 2 has slope \(2\) which is the same as the given equation.
- Equation 3 has slope \(2\) which is the same as the given equation.
- Equation 4 has slope \(2\) which is the same as the given equation.
Since only Equation 1 (\(-y - 2x = 6\)) has a different slope from the given equation \(2y - 4x = 12\), it will intersect with the given equation at exactly one point, forming a system with one solution.
Therefore, the equation is:
[tex]\[ -y - 2x = 6 \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.