Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the probability \(P(x \geq 92)\) for a normal distribution with a mean of 98 and a standard deviation of 6, follow these steps:
1. Identify the given parameters:
- Mean (\(\mu\)) = 98
- Standard deviation (\(\sigma\)) = 6
- Value of \(x\) = 92
2. Compute the z-score:
The z-score helps us determine how many standard deviations away \(x\) is from the mean. The formula for the z-score is:
[tex]\[ z = \frac{x - \mu}{\sigma} \][/tex]
Plugging in the given values:
[tex]\[ z = \frac{92 - 98}{6} = \frac{-6}{6} = -1 \][/tex]
3. Find the cumulative probability corresponding to the z-score:
Using standard normal distribution tables or a cumulative distribution function (CDF) calculator, we find the cumulative probability for \(z = -1\). This cumulative probability \(P(X < 92)\) is approximately 0.1587.
4. Calculate \(P(x \geq 92)\):
The probability \(P(x \geq 92)\) is the complement of \(P(X < 92)\):
[tex]\[ P(x \geq 92) = 1 - P(X < 92) \][/tex]
Substituting the cumulative probability:
[tex]\[ P(x \geq 92) = 1 - 0.1587 = 0.8413 \][/tex]
Therefore, the probability \(P(x \geq 92)\) is approximately 0.8413.
Among the options provided, the closest value is:
C. 0.84
1. Identify the given parameters:
- Mean (\(\mu\)) = 98
- Standard deviation (\(\sigma\)) = 6
- Value of \(x\) = 92
2. Compute the z-score:
The z-score helps us determine how many standard deviations away \(x\) is from the mean. The formula for the z-score is:
[tex]\[ z = \frac{x - \mu}{\sigma} \][/tex]
Plugging in the given values:
[tex]\[ z = \frac{92 - 98}{6} = \frac{-6}{6} = -1 \][/tex]
3. Find the cumulative probability corresponding to the z-score:
Using standard normal distribution tables or a cumulative distribution function (CDF) calculator, we find the cumulative probability for \(z = -1\). This cumulative probability \(P(X < 92)\) is approximately 0.1587.
4. Calculate \(P(x \geq 92)\):
The probability \(P(x \geq 92)\) is the complement of \(P(X < 92)\):
[tex]\[ P(x \geq 92) = 1 - P(X < 92) \][/tex]
Substituting the cumulative probability:
[tex]\[ P(x \geq 92) = 1 - 0.1587 = 0.8413 \][/tex]
Therefore, the probability \(P(x \geq 92)\) is approximately 0.8413.
Among the options provided, the closest value is:
C. 0.84
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.