Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve for \( s \) in the equation \( x = \sqrt{\frac{s(s-a)}{bc}} \), follow these steps:
1. Square both sides: To eliminate the square root, square both sides of the equation:
[tex]\[ x^2 = \left( \sqrt{\frac{s(s-a)}{bc}} \right)^2 \][/tex]
2. Simplify: The right side simplifies to remove the square root:
[tex]\[ x^2 = \frac{s(s-a)}{bc} \][/tex]
3. Isolate \( s(s-a) \): Multiply both sides of the equation by \( bc \) to remove the fraction:
[tex]\[ x^2 \cdot bc = s(s-a) \][/tex]
4. Distribute: Distribute \( s \) on the right side:
[tex]\[ bcx^2 = s^2 - as \][/tex]
5. Rearrange into a standard quadratic form: Bring all terms to one side of the equation:
[tex]\[ s^2 - as - bcx^2 = 0 \][/tex]
6. Use the quadratic formula: The standard form of a quadratic equation is \( Ax^2 + Bx + C = 0 \). Here, \( A = 1 \), \( B = -a \), and \( C = -bcx^2 \). The quadratic formula \( s = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} \) can be used to solve for \( s \):
[tex]\[ s = \frac{-(-a) \pm \sqrt{(-a)^2 - 4 \cdot 1 \cdot (-bcx^2)}}{2 \cdot 1} \][/tex]
7. Simplify under the square root and solve:
[tex]\[ s = \frac{a \pm \sqrt{a^2 + 4bcx^2}}{2} \][/tex]
Therefore, the solutions for \( s \) are:
[tex]\[ s = \frac{a + \sqrt{a^2 + 4bcx^2}}{2} \quad \text{and} \quad s = \frac{a - \sqrt{a^2 + 4bcx^2}}{2} \][/tex]
1. Square both sides: To eliminate the square root, square both sides of the equation:
[tex]\[ x^2 = \left( \sqrt{\frac{s(s-a)}{bc}} \right)^2 \][/tex]
2. Simplify: The right side simplifies to remove the square root:
[tex]\[ x^2 = \frac{s(s-a)}{bc} \][/tex]
3. Isolate \( s(s-a) \): Multiply both sides of the equation by \( bc \) to remove the fraction:
[tex]\[ x^2 \cdot bc = s(s-a) \][/tex]
4. Distribute: Distribute \( s \) on the right side:
[tex]\[ bcx^2 = s^2 - as \][/tex]
5. Rearrange into a standard quadratic form: Bring all terms to one side of the equation:
[tex]\[ s^2 - as - bcx^2 = 0 \][/tex]
6. Use the quadratic formula: The standard form of a quadratic equation is \( Ax^2 + Bx + C = 0 \). Here, \( A = 1 \), \( B = -a \), and \( C = -bcx^2 \). The quadratic formula \( s = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} \) can be used to solve for \( s \):
[tex]\[ s = \frac{-(-a) \pm \sqrt{(-a)^2 - 4 \cdot 1 \cdot (-bcx^2)}}{2 \cdot 1} \][/tex]
7. Simplify under the square root and solve:
[tex]\[ s = \frac{a \pm \sqrt{a^2 + 4bcx^2}}{2} \][/tex]
Therefore, the solutions for \( s \) are:
[tex]\[ s = \frac{a + \sqrt{a^2 + 4bcx^2}}{2} \quad \text{and} \quad s = \frac{a - \sqrt{a^2 + 4bcx^2}}{2} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.