Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which of the given angles is a possible angle of rotational symmetry for a regular polygon with 15 sides, we need to follow these steps:
1. Understanding Rotational Symmetry: A regular polygon has rotational symmetry if it can be rotated around its center by a certain angle and still look the same as it did before the rotation.
2. Calculating Basic Angle of Rotation: For a regular polygon with \( n \) sides, the angles at which it looks identical are multiples of \( \frac{360^\circ}{n} \). For a polygon with 15 sides, \( n = 15 \).
[tex]\[ \text{Angle Step} = \frac{360^\circ}{15} = 24^\circ \][/tex]
3. Finding All Possible Rotational Angles: The possible angles of rotational symmetry are the multiples of \( 24^\circ \). We list these angles from \( 24^\circ \) up to \( 336^\circ \):
[tex]\[ 24^\circ, 48^\circ, 72^\circ, 96^\circ, 120^\circ, 144^\circ, 168^\circ, 192^\circ, 216^\circ, 240^\circ, 264^\circ, 288^\circ, 312^\circ, 336^\circ \][/tex]
4. Checking Given Options Against Possible Angles: We compare the given angles \( 12^\circ, 45^\circ, 72^\circ, 90^\circ \) with the calculated possible angles:
- \( 12^\circ \) is not in the list.
- \( 45^\circ \) is not in the list.
- \( 72^\circ \) is in the list.
- \( 90^\circ \) is not in the list.
Therefore, the only possible angle of rotational symmetry among the given options for a regular polygon with 15 sides is:
[tex]\[ 72^\circ \][/tex]
1. Understanding Rotational Symmetry: A regular polygon has rotational symmetry if it can be rotated around its center by a certain angle and still look the same as it did before the rotation.
2. Calculating Basic Angle of Rotation: For a regular polygon with \( n \) sides, the angles at which it looks identical are multiples of \( \frac{360^\circ}{n} \). For a polygon with 15 sides, \( n = 15 \).
[tex]\[ \text{Angle Step} = \frac{360^\circ}{15} = 24^\circ \][/tex]
3. Finding All Possible Rotational Angles: The possible angles of rotational symmetry are the multiples of \( 24^\circ \). We list these angles from \( 24^\circ \) up to \( 336^\circ \):
[tex]\[ 24^\circ, 48^\circ, 72^\circ, 96^\circ, 120^\circ, 144^\circ, 168^\circ, 192^\circ, 216^\circ, 240^\circ, 264^\circ, 288^\circ, 312^\circ, 336^\circ \][/tex]
4. Checking Given Options Against Possible Angles: We compare the given angles \( 12^\circ, 45^\circ, 72^\circ, 90^\circ \) with the calculated possible angles:
- \( 12^\circ \) is not in the list.
- \( 45^\circ \) is not in the list.
- \( 72^\circ \) is in the list.
- \( 90^\circ \) is not in the list.
Therefore, the only possible angle of rotational symmetry among the given options for a regular polygon with 15 sides is:
[tex]\[ 72^\circ \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.