Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To analyze the given table and understand why it does not represent a logarithmic function, let's go through the characteristics of the data presented in the table:
\begin{tabular}{|l|l|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
1 & -5 \\
\hline
2 & 0 \\
\hline
4 & 4 \\
\hline
5 & 0 \\
\hline
6 & -5 \\
\hline \hline
\end{tabular}
1. Identifying the Intercepts:
- X-intercepts are the points where the function crosses the x-axis (i.e., \( y = 0 \)). From the table, we can see that \( y = 0 \) when \( x = 2 \) and \( x = 5 \). Therefore, the table shows two x-intercepts: \( x = 2 \) and \( x = 5 \).
- Y-intercepts are the points where the function crosses the y-axis (i.e., \( x = 0 \)). There is no data point in the table for \( x = 0 \), so we cannot identify any y-intercepts from the given data.
2. Behavior of the Function:
- Increasing and Decreasing Intervals:
- From \( x = 1 \) to \( x = 2 \), \( y \) increases from -5 to 0.
- From \( x = 2 \) to \( x = 4 \), \( y \) further increases from 0 to 4.
- From \( x = 4 \) to \( x = 5 \), \( y \) decreases from 4 to 0.
- From \( x = 5 \) to \( x = 6 \), \( y \) further decreases from 0 to -5.
- This indicates that the function is increasing from \( x = 1 \) to \( x = 4 \) and then decreasing from \( x = 4 \) to \( x = 6 \).
3. Characteristics of Logarithmic Functions:
- Logarithmic functions typically have a vertical asymptote (usually on the y-axis when \( x = 0 \)).
- They do not have turning points where the function first increases and then decreases.
- Logarithmic functions typically have only one x-intercept (unless transformed).
Given these observations, let's review the options:
- The table does not show a vertical asymptote: This is true, but it alone is not sufficient to conclude that the function is not logarithmic.
- The table shows two y-intercepts and it changes from increasing to decreasing: This statement is incorrect because the table does not show any y-intercepts.
- The table shows one x-intercept and one y-intercept: This is incorrect because the table shows two x-intercepts and does not show any y-intercepts.
- The table shows two x-intercepts and it changes from increasing to decreasing: This is correct. We have two x-intercepts at \( x = 2 \) and \( x = 5 \), and the function increases from \( x = 1 \) to \( x = 4 \) and then decreases from \( x = 4 \) to \( x = 6 \).
Therefore, based on the information provided in the table, the table shows two x-intercepts and it changes from increasing to decreasing, which is the information that Sebastian used in his deduction that the data does not represent a logarithmic function.
\begin{tabular}{|l|l|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
1 & -5 \\
\hline
2 & 0 \\
\hline
4 & 4 \\
\hline
5 & 0 \\
\hline
6 & -5 \\
\hline \hline
\end{tabular}
1. Identifying the Intercepts:
- X-intercepts are the points where the function crosses the x-axis (i.e., \( y = 0 \)). From the table, we can see that \( y = 0 \) when \( x = 2 \) and \( x = 5 \). Therefore, the table shows two x-intercepts: \( x = 2 \) and \( x = 5 \).
- Y-intercepts are the points where the function crosses the y-axis (i.e., \( x = 0 \)). There is no data point in the table for \( x = 0 \), so we cannot identify any y-intercepts from the given data.
2. Behavior of the Function:
- Increasing and Decreasing Intervals:
- From \( x = 1 \) to \( x = 2 \), \( y \) increases from -5 to 0.
- From \( x = 2 \) to \( x = 4 \), \( y \) further increases from 0 to 4.
- From \( x = 4 \) to \( x = 5 \), \( y \) decreases from 4 to 0.
- From \( x = 5 \) to \( x = 6 \), \( y \) further decreases from 0 to -5.
- This indicates that the function is increasing from \( x = 1 \) to \( x = 4 \) and then decreasing from \( x = 4 \) to \( x = 6 \).
3. Characteristics of Logarithmic Functions:
- Logarithmic functions typically have a vertical asymptote (usually on the y-axis when \( x = 0 \)).
- They do not have turning points where the function first increases and then decreases.
- Logarithmic functions typically have only one x-intercept (unless transformed).
Given these observations, let's review the options:
- The table does not show a vertical asymptote: This is true, but it alone is not sufficient to conclude that the function is not logarithmic.
- The table shows two y-intercepts and it changes from increasing to decreasing: This statement is incorrect because the table does not show any y-intercepts.
- The table shows one x-intercept and one y-intercept: This is incorrect because the table shows two x-intercepts and does not show any y-intercepts.
- The table shows two x-intercepts and it changes from increasing to decreasing: This is correct. We have two x-intercepts at \( x = 2 \) and \( x = 5 \), and the function increases from \( x = 1 \) to \( x = 4 \) and then decreases from \( x = 4 \) to \( x = 6 \).
Therefore, based on the information provided in the table, the table shows two x-intercepts and it changes from increasing to decreasing, which is the information that Sebastian used in his deduction that the data does not represent a logarithmic function.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.