Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Given the function \( g(x) = \sqrt{f(x)} \), we want to find the derivative of \( g(x) \) at \( x = 19 \), denoted as \( g'(19) \).
1. Recall the general form of the derivative of \( g(x) \):
If \( g(x) = \sqrt{f(x)} \), then using the chain rule:
[tex]\[ g'(x) = \frac{d}{dx} \left( f(x)^{1/2} \right) \][/tex]
Applying the chain rule:
[tex]\[ g'(x) = \frac{1}{2} f(x)^{-1/2} \cdot f'(x) \][/tex]
2. Evaluate \( f(x) \) and \( f'(x) \) at \( x = 19 \):
From the table,
[tex]\[ f(19) = 13 \quad \text{and} \quad f'(19) = -5 \][/tex]
3. Substitute these values into the derivative formula:
[tex]\[ g'(19) = \frac{1}{2} \left( f(19) \right)^{-1/2} \cdot f'(19) \][/tex]
Substitute \( f(19) = 13 \) and \( f'(19) = -5 \):
[tex]\[ g'(19) = \frac{1}{2} \left( 13 \right)^{-1/2} \cdot (-5) \][/tex]
4. Simplify the expression:
[tex]\[ g'(19) = \frac{1}{2} \frac{-5}{\sqrt{13}} \][/tex]
[tex]\[ g'(19) = -\frac{5}{2 \sqrt{13}} \][/tex]
5. Finally, compute the numerical value:
[tex]\[ g'(19) \approx -0.6933752452815365 \][/tex]
Therefore, the derivative [tex]\( g'(19) \approx -0.6933752452815365 \)[/tex].
1. Recall the general form of the derivative of \( g(x) \):
If \( g(x) = \sqrt{f(x)} \), then using the chain rule:
[tex]\[ g'(x) = \frac{d}{dx} \left( f(x)^{1/2} \right) \][/tex]
Applying the chain rule:
[tex]\[ g'(x) = \frac{1}{2} f(x)^{-1/2} \cdot f'(x) \][/tex]
2. Evaluate \( f(x) \) and \( f'(x) \) at \( x = 19 \):
From the table,
[tex]\[ f(19) = 13 \quad \text{and} \quad f'(19) = -5 \][/tex]
3. Substitute these values into the derivative formula:
[tex]\[ g'(19) = \frac{1}{2} \left( f(19) \right)^{-1/2} \cdot f'(19) \][/tex]
Substitute \( f(19) = 13 \) and \( f'(19) = -5 \):
[tex]\[ g'(19) = \frac{1}{2} \left( 13 \right)^{-1/2} \cdot (-5) \][/tex]
4. Simplify the expression:
[tex]\[ g'(19) = \frac{1}{2} \frac{-5}{\sqrt{13}} \][/tex]
[tex]\[ g'(19) = -\frac{5}{2 \sqrt{13}} \][/tex]
5. Finally, compute the numerical value:
[tex]\[ g'(19) \approx -0.6933752452815365 \][/tex]
Therefore, the derivative [tex]\( g'(19) \approx -0.6933752452815365 \)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.