Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the expression \(\left(2 x^2+\frac{4}{x}\right)^{12}\) in the form \(a(2)^b\), follow these steps:
1. Simplify the expression inside the parentheses:
[tex]\[ 2 x^2 + \frac{4}{x} \][/tex]
Notice that we can factor out a 2:
[tex]\[ 2 x^2 + \frac{4}{x} = 2 \left( x^2 + \frac{2}{x} \right) \][/tex]
2. Substitute this back into the original expression:
[tex]\[ \left(2 x^2 + \frac{4}{x}\right)^{12} = \left[ 2 \left( x^2 + \frac{2}{x} \right) \right]^{12} \][/tex]
3. Apply the exponent to both factors inside the parentheses:
Using the property of exponents \((ab)^n = a^n b^n\):
[tex]\[ \left[ 2 \left( x^2 + \frac{2}{x} \right) \right]^{12} = 2^{12} \left( x^2 + \frac{2}{x} \right)^{12} \][/tex]
4. Identify the constants and terms:
Here, \(2^{12}\) is a constant term, and \(\left( x^2 + \frac{2}{x} \right)^{12}\) is the remaining term.
5. Express the constant \(\mathbf{2^{12}}\) in its form:
The term \(2^{12}\) evaluates to:
[tex]\[ 2^{12} = 4096 \][/tex]
6. Combine all results into the desired form \(a (2)^b\):
Given that \(a = 1\), and \(b = 12\), the expression simplifies to:
[tex]\[ a (2)^b = 4096 \cdot \left( x^2 + \frac{2}{x} \right)^{12} \][/tex]
Thus, the final answer in the specified form is:
[tex]\[ a = 1, \quad b = 12, \quad\text{and the constant term } 2^{12} = 4096. \][/tex]
Therefore, \(\left(2 x^2 + \frac{4}{x}\right)^{12}\) can be expressed as:
[tex]\[ 1 \cdot (2)^{12} = 4096. \][/tex]
So, the simplified form of the given expression is [tex]\(4096 \left( x^2 + \frac{2}{x} \right)^{12}\)[/tex].
1. Simplify the expression inside the parentheses:
[tex]\[ 2 x^2 + \frac{4}{x} \][/tex]
Notice that we can factor out a 2:
[tex]\[ 2 x^2 + \frac{4}{x} = 2 \left( x^2 + \frac{2}{x} \right) \][/tex]
2. Substitute this back into the original expression:
[tex]\[ \left(2 x^2 + \frac{4}{x}\right)^{12} = \left[ 2 \left( x^2 + \frac{2}{x} \right) \right]^{12} \][/tex]
3. Apply the exponent to both factors inside the parentheses:
Using the property of exponents \((ab)^n = a^n b^n\):
[tex]\[ \left[ 2 \left( x^2 + \frac{2}{x} \right) \right]^{12} = 2^{12} \left( x^2 + \frac{2}{x} \right)^{12} \][/tex]
4. Identify the constants and terms:
Here, \(2^{12}\) is a constant term, and \(\left( x^2 + \frac{2}{x} \right)^{12}\) is the remaining term.
5. Express the constant \(\mathbf{2^{12}}\) in its form:
The term \(2^{12}\) evaluates to:
[tex]\[ 2^{12} = 4096 \][/tex]
6. Combine all results into the desired form \(a (2)^b\):
Given that \(a = 1\), and \(b = 12\), the expression simplifies to:
[tex]\[ a (2)^b = 4096 \cdot \left( x^2 + \frac{2}{x} \right)^{12} \][/tex]
Thus, the final answer in the specified form is:
[tex]\[ a = 1, \quad b = 12, \quad\text{and the constant term } 2^{12} = 4096. \][/tex]
Therefore, \(\left(2 x^2 + \frac{4}{x}\right)^{12}\) can be expressed as:
[tex]\[ 1 \cdot (2)^{12} = 4096. \][/tex]
So, the simplified form of the given expression is [tex]\(4096 \left( x^2 + \frac{2}{x} \right)^{12}\)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.