Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the limit of the function \( f(x) \) as \( x \) approaches 5, we need to understand the behavior of the function \( f(x) \) at that particular point. Suppose we have the function \( f(x) = 2x + 3 \).
Here are the steps to solve for the limit:
1. Substitute the value of \( x \): The first step in finding the limit is to directly substitute the value \( x = 5 \) into the function \( f(x) \).
2. Simplify the function: Plug in \( x = 5 \) into \( f(x) = 2x + 3 \):
[tex]\[ f(5) = 2(5) + 3 \][/tex]
3. Perform the arithmetic: Calculate \( 2(5) + 3 \):
[tex]\[ f(5) = 10 + 3 = 13 \][/tex]
So, the limit of \( f(x) \) as \( x \) approaches 5 is 13. Therefore,
[tex]\[ \lim _{x \rightarrow 5} f(x) = 13 \][/tex]
This means the function \( f(x) \) approaches the value 13 as \( x \) gets closer and closer to 5.
Additionally, if we revisit our function \( f(x) = 2x + 3 \), we can see that it's a linear function, meaning its limit at any point \( x = a \) is simply the value of the function at that point \( a \). So the limit process is straightforward since the function is continuous and defined for all real values of \( x \).
Therefore, the detailed solution to our limit in question is:
[tex]\[ \lim _{x \rightarrow 5} f(x) = 13 \][/tex]
Here are the steps to solve for the limit:
1. Substitute the value of \( x \): The first step in finding the limit is to directly substitute the value \( x = 5 \) into the function \( f(x) \).
2. Simplify the function: Plug in \( x = 5 \) into \( f(x) = 2x + 3 \):
[tex]\[ f(5) = 2(5) + 3 \][/tex]
3. Perform the arithmetic: Calculate \( 2(5) + 3 \):
[tex]\[ f(5) = 10 + 3 = 13 \][/tex]
So, the limit of \( f(x) \) as \( x \) approaches 5 is 13. Therefore,
[tex]\[ \lim _{x \rightarrow 5} f(x) = 13 \][/tex]
This means the function \( f(x) \) approaches the value 13 as \( x \) gets closer and closer to 5.
Additionally, if we revisit our function \( f(x) = 2x + 3 \), we can see that it's a linear function, meaning its limit at any point \( x = a \) is simply the value of the function at that point \( a \). So the limit process is straightforward since the function is continuous and defined for all real values of \( x \).
Therefore, the detailed solution to our limit in question is:
[tex]\[ \lim _{x \rightarrow 5} f(x) = 13 \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.