Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's solve the problem step by step:
### Step 1: Define the Equations
We need to find two integers, \(a\) and \(b\), such that:
1. Their sum is \(-3\):
[tex]\[ a + b = -3 \][/tex]
2. Their difference is \(-5\):
[tex]\[ a - b = -5 \][/tex]
### Step 2: Solve the System of Equations
We have the following system of linear equations from the given conditions:
1. \( a + b = -3 \)
2. \( a - b = -5 \)
First, let's add these two equations together:
[tex]\[ (a + b) + (a - b) = -3 + (-5) \][/tex]
This simplifies to:
[tex]\[ 2a = -8 \][/tex]
[tex]\[ a = -4 \][/tex]
### Step 3: Substitute the Value of \(a\)
Now, we take the value of \(a\) and substitute it back into the first equation (\(a + b = -3\)):
[tex]\[ -4 + b = -3 \][/tex]
[tex]\[ b = -3 + 4 \][/tex]
[tex]\[ b = 1 \][/tex]
### Step 4: Verify the Solution
We found two integers, \(a = -4\) and \(b = 1\). Let's verify if they satisfy both conditions:
1. Sum is \(-3\):
[tex]\[ -4 + 1 = -3 \][/tex]
2. Difference is \(-5\):
[tex]\[ -4 - 1 = -5 \][/tex]
### Step 5: Address the Additional Condition
While the third condition (\(a - b = 2\)) appears in the text, we don't need it to solve the primary conditions of sum and difference provided. The correct integers satisfying the sum \(-3\) and difference \(-5\) are \(a = -4\) and \(b = 1\).
The pair of integers meeting the given conditions are:
[tex]\[ (-4, 1) \][/tex]
### Step 1: Define the Equations
We need to find two integers, \(a\) and \(b\), such that:
1. Their sum is \(-3\):
[tex]\[ a + b = -3 \][/tex]
2. Their difference is \(-5\):
[tex]\[ a - b = -5 \][/tex]
### Step 2: Solve the System of Equations
We have the following system of linear equations from the given conditions:
1. \( a + b = -3 \)
2. \( a - b = -5 \)
First, let's add these two equations together:
[tex]\[ (a + b) + (a - b) = -3 + (-5) \][/tex]
This simplifies to:
[tex]\[ 2a = -8 \][/tex]
[tex]\[ a = -4 \][/tex]
### Step 3: Substitute the Value of \(a\)
Now, we take the value of \(a\) and substitute it back into the first equation (\(a + b = -3\)):
[tex]\[ -4 + b = -3 \][/tex]
[tex]\[ b = -3 + 4 \][/tex]
[tex]\[ b = 1 \][/tex]
### Step 4: Verify the Solution
We found two integers, \(a = -4\) and \(b = 1\). Let's verify if they satisfy both conditions:
1. Sum is \(-3\):
[tex]\[ -4 + 1 = -3 \][/tex]
2. Difference is \(-5\):
[tex]\[ -4 - 1 = -5 \][/tex]
### Step 5: Address the Additional Condition
While the third condition (\(a - b = 2\)) appears in the text, we don't need it to solve the primary conditions of sum and difference provided. The correct integers satisfying the sum \(-3\) and difference \(-5\) are \(a = -4\) and \(b = 1\).
The pair of integers meeting the given conditions are:
[tex]\[ (-4, 1) \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.