Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure, let's work through both parts of this problem step-by-step.
Here are the known values:
- Temperature of hot gases (\( T_{\text{gas}} \)) = \( 280^{\circ}C \)
- Temperature of air (\( T_{\text{air}} \)) = \( 35^{\circ}C \)
- Heat transfer coefficient of hot gases (\( h_{\text{gas}} \)) = \( 31.5 \text{ W/m}^2\text{K} \)
- Heat transfer coefficient of air (\( h_{\text{air}} \)) = \( 32 \text{ W/m}^2\text{K} \)
- Thermal conductivity of the metal plate (\( k_{\text{plate}} \)) = \( 50 \text{ W/mK} \)
- Thickness of the metal plate (\( t_{\text{plate}} \)) = \( 0.01 \text{ m} \)
### Part (i): Calculate the overall heat transfer coefficient (U)
The overall heat transfer coefficient \( U \) for a composite system like this can be calculated using the formula:
[tex]\[ \frac{1}{U} = \frac{1}{h_{\text{gas}}} + \frac{t_{\text{plate}}}{k_{\text{plate}}} + \frac{1}{h_{\text{air}}} \][/tex]
Now substituting in the given values:
[tex]\[ \frac{1}{U} = \frac{1}{31.5} + \frac{0.01}{50} + \frac{1}{32} \][/tex]
Calculate each term individually:
[tex]\[ \frac{1}{31.5} \approx 0.03175 \][/tex]
[tex]\[ \frac{0.01}{50} = 0.0002 \][/tex]
[tex]\[ \frac{1}{32} \approx 0.03125 \][/tex]
So,
[tex]\[ \frac{1}{U} = 0.03175 + 0.0002 + 0.03125 = 0.0632 \][/tex]
Now, take the reciprocal to find \( U \):
[tex]\[ U = \frac{1}{0.0632} \approx 15.82378 \text{ W/m}^2\text{K} \][/tex]
### Part (ii): Calculate the heat transfer (Q)
The heat transfer \( Q \) is given by the formula:
[tex]\[ Q = U \times A \times \Delta T \times t \][/tex]
Where:
- \( U \) = \( 15.82378 \text{ W/m}^2\text{K} \)
- Assuming the area \( A \) of the plate to be \( 1 \text{ m}^2 \)
- \( \Delta T \) is the temperature difference between the hot gases and the air:
[tex]\[ \Delta T = T_{\text{gas}} - T_{\text{air}} = 280 - 35 = 245^{\circ}C \][/tex]
- Time \( t \) = \( 60 \) seconds (since we want the heat transfer per minute)
Substitute these values into the equation:
[tex]\[ Q = 15.82378 \times 1 \times 245 \times 60 \][/tex]
[tex]\[ Q = 232609.54199 \text{ J} \][/tex]
Thus, the calculated values are:
1. The overall heat transfer coefficient \( U \) is approximately \( 15.82378 \text{ W/m}^2\text{K} \).
2. The heat transfer from gases to air per minute per square meter of plate area [tex]\( Q \)[/tex] is approximately [tex]\( 232609.54 \text{ J} \)[/tex].
Here are the known values:
- Temperature of hot gases (\( T_{\text{gas}} \)) = \( 280^{\circ}C \)
- Temperature of air (\( T_{\text{air}} \)) = \( 35^{\circ}C \)
- Heat transfer coefficient of hot gases (\( h_{\text{gas}} \)) = \( 31.5 \text{ W/m}^2\text{K} \)
- Heat transfer coefficient of air (\( h_{\text{air}} \)) = \( 32 \text{ W/m}^2\text{K} \)
- Thermal conductivity of the metal plate (\( k_{\text{plate}} \)) = \( 50 \text{ W/mK} \)
- Thickness of the metal plate (\( t_{\text{plate}} \)) = \( 0.01 \text{ m} \)
### Part (i): Calculate the overall heat transfer coefficient (U)
The overall heat transfer coefficient \( U \) for a composite system like this can be calculated using the formula:
[tex]\[ \frac{1}{U} = \frac{1}{h_{\text{gas}}} + \frac{t_{\text{plate}}}{k_{\text{plate}}} + \frac{1}{h_{\text{air}}} \][/tex]
Now substituting in the given values:
[tex]\[ \frac{1}{U} = \frac{1}{31.5} + \frac{0.01}{50} + \frac{1}{32} \][/tex]
Calculate each term individually:
[tex]\[ \frac{1}{31.5} \approx 0.03175 \][/tex]
[tex]\[ \frac{0.01}{50} = 0.0002 \][/tex]
[tex]\[ \frac{1}{32} \approx 0.03125 \][/tex]
So,
[tex]\[ \frac{1}{U} = 0.03175 + 0.0002 + 0.03125 = 0.0632 \][/tex]
Now, take the reciprocal to find \( U \):
[tex]\[ U = \frac{1}{0.0632} \approx 15.82378 \text{ W/m}^2\text{K} \][/tex]
### Part (ii): Calculate the heat transfer (Q)
The heat transfer \( Q \) is given by the formula:
[tex]\[ Q = U \times A \times \Delta T \times t \][/tex]
Where:
- \( U \) = \( 15.82378 \text{ W/m}^2\text{K} \)
- Assuming the area \( A \) of the plate to be \( 1 \text{ m}^2 \)
- \( \Delta T \) is the temperature difference between the hot gases and the air:
[tex]\[ \Delta T = T_{\text{gas}} - T_{\text{air}} = 280 - 35 = 245^{\circ}C \][/tex]
- Time \( t \) = \( 60 \) seconds (since we want the heat transfer per minute)
Substitute these values into the equation:
[tex]\[ Q = 15.82378 \times 1 \times 245 \times 60 \][/tex]
[tex]\[ Q = 232609.54199 \text{ J} \][/tex]
Thus, the calculated values are:
1. The overall heat transfer coefficient \( U \) is approximately \( 15.82378 \text{ W/m}^2\text{K} \).
2. The heat transfer from gases to air per minute per square meter of plate area [tex]\( Q \)[/tex] is approximately [tex]\( 232609.54 \text{ J} \)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.