Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's classify each polynomial based on its degree and number of terms according to the steps provided:
1. Polynomial: \(x^5 + 5x^3 - 2x^2 + 3x\)
- Degree: 5 (The highest power of the variable \(x\))
- Number of Terms: 4 (Separated by plus and minus signs)
- Classification:
- Quintic (degree 5)
- Four terms (4 terms)
2. Polynomial: \(5 - t - 2t^4\)
- Degree: 4 (The highest power of the variable \(t\))
- Number of Terms: 3 (Separated by plus and minus signs)
- Classification:
- Quartic (degree 4)
- Trinomial (3 terms)
3. Polynomial: \(8y - \frac{6y^2}{7^3}\)
- Degree: 2 (The highest power of the variable \(y\))
- Number of Terms: 2 (Separated by plus and minus signs)
- Classification:
- Quadratic (degree 2)
- Binomial (2 terms)
4. Polynomial: \(2x^5y^3 + 3\)
- Degree: 8 (The sum of the highest powers of \(x\) and \(y\) in the term \(2x^5y^3\))
- Number of Terms: 2 (Separated by plus and minus signs)
- Classification:
- Eighth-degree polynomial (degree 8)
- Binomial (2 terms)
5. Polynomial: \(4m - m^2 + 1\)
- Degree: 2 (The highest power of the variable \(m\))
- Number of Terms: 3 (Separated by plus and minus signs)
- Classification:
- Quadratic (degree 2)
- Trinomial (3 terms)
6. Polynomial: \(-2g^2h\)
- Degree: 3 (The sum of the highest powers of \(g\) and \(h\) in the term \(-2g^2h\))
- Number of Terms: 1 (Since it is a single term)
- Classification:
- Cubic (degree 3)
- Monomial (1 term)
Summary Table:
\begin{tabular}{|c|c|c|}
\hline Polynomial & Degree & Number of Terms \\
\hline [tex]$x^5+5 x^3-2 x^2+3 x$[/tex] & Quintic (5) & Four terms (4) \\
\hline [tex]$5-t-2 t^4$[/tex] & Quartic (4) & Trinomial (3) \\
\hline [tex]$8 y-\frac{6 y^2}{7^3}$[/tex] & Quadratic (2) & Binomial (2) \\
\hline [tex]$2 x^5 y^3+3$[/tex] & Eighth-degree (8) & Binomial (2) \\
\hline [tex]$4 m-m^2+1$[/tex] & Quadratic (2) & Trinomial (3) \\
\hline[tex]$-2 g^2 h$[/tex] & Cubic (3) & Monomial (1) \\
\hline
\end{tabular}
This classification provides a clear understanding of each polynomial's degree and number of terms.
1. Polynomial: \(x^5 + 5x^3 - 2x^2 + 3x\)
- Degree: 5 (The highest power of the variable \(x\))
- Number of Terms: 4 (Separated by plus and minus signs)
- Classification:
- Quintic (degree 5)
- Four terms (4 terms)
2. Polynomial: \(5 - t - 2t^4\)
- Degree: 4 (The highest power of the variable \(t\))
- Number of Terms: 3 (Separated by plus and minus signs)
- Classification:
- Quartic (degree 4)
- Trinomial (3 terms)
3. Polynomial: \(8y - \frac{6y^2}{7^3}\)
- Degree: 2 (The highest power of the variable \(y\))
- Number of Terms: 2 (Separated by plus and minus signs)
- Classification:
- Quadratic (degree 2)
- Binomial (2 terms)
4. Polynomial: \(2x^5y^3 + 3\)
- Degree: 8 (The sum of the highest powers of \(x\) and \(y\) in the term \(2x^5y^3\))
- Number of Terms: 2 (Separated by plus and minus signs)
- Classification:
- Eighth-degree polynomial (degree 8)
- Binomial (2 terms)
5. Polynomial: \(4m - m^2 + 1\)
- Degree: 2 (The highest power of the variable \(m\))
- Number of Terms: 3 (Separated by plus and minus signs)
- Classification:
- Quadratic (degree 2)
- Trinomial (3 terms)
6. Polynomial: \(-2g^2h\)
- Degree: 3 (The sum of the highest powers of \(g\) and \(h\) in the term \(-2g^2h\))
- Number of Terms: 1 (Since it is a single term)
- Classification:
- Cubic (degree 3)
- Monomial (1 term)
Summary Table:
\begin{tabular}{|c|c|c|}
\hline Polynomial & Degree & Number of Terms \\
\hline [tex]$x^5+5 x^3-2 x^2+3 x$[/tex] & Quintic (5) & Four terms (4) \\
\hline [tex]$5-t-2 t^4$[/tex] & Quartic (4) & Trinomial (3) \\
\hline [tex]$8 y-\frac{6 y^2}{7^3}$[/tex] & Quadratic (2) & Binomial (2) \\
\hline [tex]$2 x^5 y^3+3$[/tex] & Eighth-degree (8) & Binomial (2) \\
\hline [tex]$4 m-m^2+1$[/tex] & Quadratic (2) & Trinomial (3) \\
\hline[tex]$-2 g^2 h$[/tex] & Cubic (3) & Monomial (1) \\
\hline
\end{tabular}
This classification provides a clear understanding of each polynomial's degree and number of terms.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.