Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which ratio is also equal to \(\frac{RT}{RX}\) and \(\frac{RS}{RY}\), let's first analyze the given triangles \(\triangle RST\) and \(\triangle RYX\). Because these triangles are similar by the SSS (Side-Side-Side) similarity theorem, the corresponding sides of these triangles are proportional.
The ratio \(\frac{RT}{RX}\) is given, and we’re also given that \(\frac{RS}{RY}\) is equal to this ratio. To find out which among the choices corresponds to this ratio, we should identify which sides of the triangles correspond.
Ratios of Corresponding Sides:
1. \(\frac{RT}{RX}\): This is the ratio of a side of \(\triangle RST\) to a corresponding side of \(\triangle RYX\).
2. \(\frac{RS}{RY}\): This is the ratio of another side of \(\triangle RST\) to a corresponding side of \(\triangle RYX\).
Given the choices:
1. \(\frac{XY}{TS}\)
2. \(\frac{SY}{RY}\)
3. \(\frac{RX}{XT}\)
4. \(\frac{ST}{VX}\)
Let's analyze each choice:
Choice 1: \(\frac{XY}{TS}\)
- In \(\triangle RST\) and \(\triangle RYX\), if we consider the side \(XY\) from \(\triangle RYX\) and \(TS\) from \(\triangle RST\), these are matching corresponding sides.
- Since \(\triangle RYX\) is similar to \(\triangle RST\), the ratio of their corresponding sides should be consistent with the given ratios \(\frac{RT}{RX}\) and \(\frac{RS}{RY}\).
- So, \(\frac{XY}{TS}\) should also equal the same proportional ratio.
Therefore, the ratio \(\frac{XY}{TS}\) is the correct choice that is equal to \(\frac{RT}{RX}\).
So, the ratio that is also equal to \(\frac{RT}{RX}\) and \(\frac{RS}{RY}\) is:
[tex]\(\boxed{\frac{XY}{TS}}\)[/tex].
The ratio \(\frac{RT}{RX}\) is given, and we’re also given that \(\frac{RS}{RY}\) is equal to this ratio. To find out which among the choices corresponds to this ratio, we should identify which sides of the triangles correspond.
Ratios of Corresponding Sides:
1. \(\frac{RT}{RX}\): This is the ratio of a side of \(\triangle RST\) to a corresponding side of \(\triangle RYX\).
2. \(\frac{RS}{RY}\): This is the ratio of another side of \(\triangle RST\) to a corresponding side of \(\triangle RYX\).
Given the choices:
1. \(\frac{XY}{TS}\)
2. \(\frac{SY}{RY}\)
3. \(\frac{RX}{XT}\)
4. \(\frac{ST}{VX}\)
Let's analyze each choice:
Choice 1: \(\frac{XY}{TS}\)
- In \(\triangle RST\) and \(\triangle RYX\), if we consider the side \(XY\) from \(\triangle RYX\) and \(TS\) from \(\triangle RST\), these are matching corresponding sides.
- Since \(\triangle RYX\) is similar to \(\triangle RST\), the ratio of their corresponding sides should be consistent with the given ratios \(\frac{RT}{RX}\) and \(\frac{RS}{RY}\).
- So, \(\frac{XY}{TS}\) should also equal the same proportional ratio.
Therefore, the ratio \(\frac{XY}{TS}\) is the correct choice that is equal to \(\frac{RT}{RX}\).
So, the ratio that is also equal to \(\frac{RT}{RX}\) and \(\frac{RS}{RY}\) is:
[tex]\(\boxed{\frac{XY}{TS}}\)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.