Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Simplify the exponential expression. Assume that variables represent nonzero real numbers.

[tex]\[
\left(-5 x^4 y^{-5}\right)\left(3 x^{-1} y\right)
\][/tex]

A) \(\frac{-15 x^3}{y^4}\)

B) \(\frac{-15 x^5}{y^6}\)

C) \(\frac{-2 x^3}{y^4}\)

D) [tex]\(-15 x^3 y^6\)[/tex]


Sagot :

To solve the given exponential expression:

[tex]\[ \left(-5 x^4 y^{-5}\right)\left(3 x^{-1} y\right) \][/tex]

we will break down the multiplication into manageable parts, combining the coefficients and exponents separately.

### Step 1: Multiply the coefficients
The coefficients are \(-5\) and \(3\):

[tex]\[ -5 \cdot 3 = -15 \][/tex]

### Step 2: Combine the exponents of \(x\)
The exponents of \(x\) in the two terms are \(4\) and \(-1\):

[tex]\[ x^4 \cdot x^{-1} = x^{4 + (-1)} = x^3 \][/tex]

### Step 3: Combine the exponents of \(y\)
The exponents of \(y\) in the two terms are \(-5\) and \(1\):

[tex]\[ y^{-5} \cdot y^1 = y^{-5 + 1} = y^{-4} \][/tex]

### Step 4: Combine the results
Combining the coefficient and the combined exponents, the simplified expression is:

[tex]\[ -15 x^3 y^{-4} \][/tex]

### Step 5: Write the expression in a simplified form
Since \(y^{-4}\) is the same as \(\frac{1}{y^4}\), we can rewrite the expression as:

[tex]\[ -15 x^3 y^{-4} = \frac{-15 x^3}{y^4} \][/tex]

Thus, the simplified form of \(\left(-5 x^4 y^{-5}\right)\left(3 x^{-1} y\right)\) is:

[tex]\[ \frac{-15 x^3}{y^4} \][/tex]

### Conclusion
Given the multiple-choice options:
A) \(\frac{-15 x^3}{y^4}\)
B) \(\frac{-15 x^5}{y^6}\)
C) \(\frac{-2 x^3}{y^4}\)
D) \(-15 x^3 y^6\)

The correct answer is:

A) [tex]\(\frac{-15 x^3}{y^4}\)[/tex]