Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine how to invest $8,800 such that the interest earned from a low-risk investment at 9% is equal to the interest earned from a high-risk investment at 13%, we will follow these steps:
1. Define the Variables:
Let's denote:
- \( x \) as the amount invested at the low-risk rate of 9%.
- \( y \) as the amount invested at the high-risk rate of 13%.
2. Relationship Between Variables:
Since the total investment is $8,800, we can write:
[tex]\[ x + y = 8800 \][/tex]
3. Interest Earned from Each Investment:
The interest earned from the low-risk investment is \( x \times 0.09 \).
The interest earned from the high-risk investment is \( y \times 0.13 \).
4. Equal Interest Condition:
According to the problem, the interest from both investments should be equal. Thus, we can set up the equation:
[tex]\[ x \times 0.09 = y \times 0.13 \][/tex]
5. Substitute \( y \):
From the total investment equation \( x + y = 8800 \), we can express \( y \) in terms of \( x \):
[tex]\[ y = 8800 - x \][/tex]
Substituting \( y \) in the interest equation gives:
[tex]\[ x \times 0.09 = (8800 - x) \times 0.13 \][/tex]
6. Solve for \( x \):
Let's solve the equation for \( x \):
[tex]\[ 0.09x = 0.13 \times (8800 - x) \][/tex]
Expanding and simplifying,
[tex]\[ 0.09x = 1144 - 0.13x \][/tex]
[tex]\[ 0.09x + 0.13x = 1144 \][/tex]
[tex]\[ 0.22x = 1144 \][/tex]
[tex]\[ x = \frac{1144}{0.22} \][/tex]
[tex]\[ x = 5200 \][/tex]
7. Find \( y \):
Using \( y = 8800 - x \),
[tex]\[ y = 8800 - 5200 \][/tex]
[tex]\[ y = 3600 \][/tex]
Thus, to ensure that the interest earned from each investment is the same:
- $5,200 should be invested at the low-risk rate of 9%.
- $3,600 should be invested at the high-risk rate of 13%.
1. Define the Variables:
Let's denote:
- \( x \) as the amount invested at the low-risk rate of 9%.
- \( y \) as the amount invested at the high-risk rate of 13%.
2. Relationship Between Variables:
Since the total investment is $8,800, we can write:
[tex]\[ x + y = 8800 \][/tex]
3. Interest Earned from Each Investment:
The interest earned from the low-risk investment is \( x \times 0.09 \).
The interest earned from the high-risk investment is \( y \times 0.13 \).
4. Equal Interest Condition:
According to the problem, the interest from both investments should be equal. Thus, we can set up the equation:
[tex]\[ x \times 0.09 = y \times 0.13 \][/tex]
5. Substitute \( y \):
From the total investment equation \( x + y = 8800 \), we can express \( y \) in terms of \( x \):
[tex]\[ y = 8800 - x \][/tex]
Substituting \( y \) in the interest equation gives:
[tex]\[ x \times 0.09 = (8800 - x) \times 0.13 \][/tex]
6. Solve for \( x \):
Let's solve the equation for \( x \):
[tex]\[ 0.09x = 0.13 \times (8800 - x) \][/tex]
Expanding and simplifying,
[tex]\[ 0.09x = 1144 - 0.13x \][/tex]
[tex]\[ 0.09x + 0.13x = 1144 \][/tex]
[tex]\[ 0.22x = 1144 \][/tex]
[tex]\[ x = \frac{1144}{0.22} \][/tex]
[tex]\[ x = 5200 \][/tex]
7. Find \( y \):
Using \( y = 8800 - x \),
[tex]\[ y = 8800 - 5200 \][/tex]
[tex]\[ y = 3600 \][/tex]
Thus, to ensure that the interest earned from each investment is the same:
- $5,200 should be invested at the low-risk rate of 9%.
- $3,600 should be invested at the high-risk rate of 13%.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.