Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find \( f(x) - g(x) \) where \( f(x) = 3x^2 - 4x + 5 \) and \( g(x) = 2x^2 + 2 \), follow these steps:
1. Arrange the expressions for \( f(x) \) and \( g(x) \):
[tex]\[ f(x) = 3x^2 - 4x + 5 \][/tex]
[tex]\[ g(x) = 2x^2 + 2 \][/tex]
2. Subtract the like terms of \( f(x) \) and \( g(x) \):
- \( x^2 \) terms: \( 3x^2 - 2x^2 = 1x^2 \)
- \( x \) terms: \( -4x \)
- Constant terms: \( 5 - 2 = 3 \)
3. Combine the results from step 2 to form the polynomial \( f(x) - g(x) \):
[tex]\[ f(x) - g(x) = 1x^2 - 4x + 3 \][/tex]
So, \( f(x) - g(x) \) is:
[tex]\[ \boxed{x^2 - 4x + 3} \][/tex]
Checking the choices:
A. \( 5x^2 - 4x + 7 \)
B. \( x^2 - 4x + 3 \)
C. \( -x^2 + 4x - 3 \)
D. \( x^2 - 4x + 7 \)
Thus, the correct answer is option [tex]\( \boxed{B} \)[/tex].
1. Arrange the expressions for \( f(x) \) and \( g(x) \):
[tex]\[ f(x) = 3x^2 - 4x + 5 \][/tex]
[tex]\[ g(x) = 2x^2 + 2 \][/tex]
2. Subtract the like terms of \( f(x) \) and \( g(x) \):
- \( x^2 \) terms: \( 3x^2 - 2x^2 = 1x^2 \)
- \( x \) terms: \( -4x \)
- Constant terms: \( 5 - 2 = 3 \)
3. Combine the results from step 2 to form the polynomial \( f(x) - g(x) \):
[tex]\[ f(x) - g(x) = 1x^2 - 4x + 3 \][/tex]
So, \( f(x) - g(x) \) is:
[tex]\[ \boxed{x^2 - 4x + 3} \][/tex]
Checking the choices:
A. \( 5x^2 - 4x + 7 \)
B. \( x^2 - 4x + 3 \)
C. \( -x^2 + 4x - 3 \)
D. \( x^2 - 4x + 7 \)
Thus, the correct answer is option [tex]\( \boxed{B} \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.