Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

[tex]$\triangle XYZ$[/tex] was reflected over a vertical line, then dilated by a scale factor of [tex]$\frac{1}{2}$[/tex], resulting in [tex]$\Delta X'Y'Z'$[/tex]. Which must be true of the two triangles? Select three options.

A. [tex]$\triangle XYZ \sim \triangle X'Y'Z'$[/tex]

B. [tex]$\angle XZY = \angle Y'Z'X'$[/tex]

C. [tex]$\overline{YX} = \overline{Y'X'}$[/tex]

D. [tex]$XZ = 2X'Z'$[/tex]

E. [tex]$m \angle YXZ = 2m \angle Y'X'Z'$[/tex]


Sagot :

Certainly! Let's analyze the transformations applied to triangle \( \triangle XYZ \):

1. Reflection over a vertical line:
- Reflecting \( \triangle XYZ \) over a vertical line means that each point of the triangle is mirrored to a corresponding point on the opposite side of the reflection line. This transformation preserves the sizes and shapes of the triangle's angles and sides, but changes their orientation.

2. Dilation by a scale factor of \( \frac{1}{2} \):
- After reflection, a dilation with a scale factor of \( \frac{1}{2} \) reduces the size of the triangle to half of its original dimensions, maintaining the shape and the proportional relationships between the sides and angles.

Considering these transformations, we can determine the truths about the triangles \( \triangle XYZ \) and \( \triangle X'Y'Z' \):

1. Similarity \( \triangle XYZ \sim \triangle X'Y'Z' \):
- As the dilation transformation retains the shape and the reflective transformation preserves the angles, \( \triangle XYZ \) and \( \triangle X'Y'Z' \) must be similar triangles.

2. Angle preservation \( \angle XZY = \angle Y'Z'X' \):
- Reflecting and dilating the triangle does not alter the measure of any internal angles of the triangle; therefore, corresponding angles in \( \triangle XYZ \) and \( \triangle X'Y'Z' \) are equal.

3. Side length relation \( XZ = 2 \cdot X'Z' \):
- The dilation transformation reduces the original side lengths by half. Hence, for corresponding sides, \( XZ \) in \( \triangle XYZ \) will be twice the length of \( X'Z' \) in \( \triangle X'Y'Z' \).

To conclude:

- \( \triangle XYZ \sim \triangle X'Y'Z' \)
- \( \angle XZY = \angle Y'Z'X' \)
- \( XZ = 2 X'Z' \)

These options are correct:
- \( \triangle XYZ \sim \triangle X'Y'Z' \)
- \( \angle X Z Y = \angle Y' Z' X' \)
- [tex]\( X Z = 2 X' Z' \)[/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.