At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine whether a table represents a linear function, we need to see if the changes in \( y \) values are consistent when the changes in \( x \) values are the same. In other words, a linear function will have constant differences between consecutive \( y \) values when \( x \) values increase by a constant amount.
Let's analyze the given table:
[tex]\[ \begin{tabular}{|c|c|} \hline [tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline 1 & 5 \\
\hline 2 & 10 \\
\hline 3 & 15 \\
\hline 4 & 20 \\
\hline 5 & 25 \\
\hline
\end{tabular}
\][/tex]
We start by calculating the differences between consecutive \( y \) values:
- Difference between \( y_2 \) and \( y_1 \) is \( 10 - 5 = 5 \)
- Difference between \( y_3 \) and \( y_2 \) is \( 15 - 10 = 5 \)
- Difference between \( y_4 \) and \( y_3 \) is \( 20 - 15 = 5 \)
- Difference between \( y_5 \) and \( y_4 \) is \( 25 - 20 = 5 \)
We observe that the differences between consecutive \( y \) values are all \( 5 \). This consistency in differences indicates that the function is linear.
To further confirm, let's consider the general form of a linear function, which is \( y = mx + b \). Here,
- \( m \) is the slope (rate of change)
- \( b \) is the y-intercept (the value of \( y \) when \( x = 0 \))
Given the differences between consecutive \( y \) values being constant, we can deduce that the rate of change (\( m \)) is 5. The relationships between the \( x \) and \( y \) values can then be inferred to fit a linear equation of the form:
[tex]\[ y = 5x \][/tex]
Hence, the table given represents a linear function.
Let's analyze the given table:
[tex]\[ \begin{tabular}{|c|c|} \hline [tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline 1 & 5 \\
\hline 2 & 10 \\
\hline 3 & 15 \\
\hline 4 & 20 \\
\hline 5 & 25 \\
\hline
\end{tabular}
\][/tex]
We start by calculating the differences between consecutive \( y \) values:
- Difference between \( y_2 \) and \( y_1 \) is \( 10 - 5 = 5 \)
- Difference between \( y_3 \) and \( y_2 \) is \( 15 - 10 = 5 \)
- Difference between \( y_4 \) and \( y_3 \) is \( 20 - 15 = 5 \)
- Difference between \( y_5 \) and \( y_4 \) is \( 25 - 20 = 5 \)
We observe that the differences between consecutive \( y \) values are all \( 5 \). This consistency in differences indicates that the function is linear.
To further confirm, let's consider the general form of a linear function, which is \( y = mx + b \). Here,
- \( m \) is the slope (rate of change)
- \( b \) is the y-intercept (the value of \( y \) when \( x = 0 \))
Given the differences between consecutive \( y \) values being constant, we can deduce that the rate of change (\( m \)) is 5. The relationships between the \( x \) and \( y \) values can then be inferred to fit a linear equation of the form:
[tex]\[ y = 5x \][/tex]
Hence, the table given represents a linear function.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.