Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine whether a table represents a linear function, we need to see if the changes in \( y \) values are consistent when the changes in \( x \) values are the same. In other words, a linear function will have constant differences between consecutive \( y \) values when \( x \) values increase by a constant amount.
Let's analyze the given table:
[tex]\[ \begin{tabular}{|c|c|} \hline [tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline 1 & 5 \\
\hline 2 & 10 \\
\hline 3 & 15 \\
\hline 4 & 20 \\
\hline 5 & 25 \\
\hline
\end{tabular}
\][/tex]
We start by calculating the differences between consecutive \( y \) values:
- Difference between \( y_2 \) and \( y_1 \) is \( 10 - 5 = 5 \)
- Difference between \( y_3 \) and \( y_2 \) is \( 15 - 10 = 5 \)
- Difference between \( y_4 \) and \( y_3 \) is \( 20 - 15 = 5 \)
- Difference between \( y_5 \) and \( y_4 \) is \( 25 - 20 = 5 \)
We observe that the differences between consecutive \( y \) values are all \( 5 \). This consistency in differences indicates that the function is linear.
To further confirm, let's consider the general form of a linear function, which is \( y = mx + b \). Here,
- \( m \) is the slope (rate of change)
- \( b \) is the y-intercept (the value of \( y \) when \( x = 0 \))
Given the differences between consecutive \( y \) values being constant, we can deduce that the rate of change (\( m \)) is 5. The relationships between the \( x \) and \( y \) values can then be inferred to fit a linear equation of the form:
[tex]\[ y = 5x \][/tex]
Hence, the table given represents a linear function.
Let's analyze the given table:
[tex]\[ \begin{tabular}{|c|c|} \hline [tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline 1 & 5 \\
\hline 2 & 10 \\
\hline 3 & 15 \\
\hline 4 & 20 \\
\hline 5 & 25 \\
\hline
\end{tabular}
\][/tex]
We start by calculating the differences between consecutive \( y \) values:
- Difference between \( y_2 \) and \( y_1 \) is \( 10 - 5 = 5 \)
- Difference between \( y_3 \) and \( y_2 \) is \( 15 - 10 = 5 \)
- Difference between \( y_4 \) and \( y_3 \) is \( 20 - 15 = 5 \)
- Difference between \( y_5 \) and \( y_4 \) is \( 25 - 20 = 5 \)
We observe that the differences between consecutive \( y \) values are all \( 5 \). This consistency in differences indicates that the function is linear.
To further confirm, let's consider the general form of a linear function, which is \( y = mx + b \). Here,
- \( m \) is the slope (rate of change)
- \( b \) is the y-intercept (the value of \( y \) when \( x = 0 \))
Given the differences between consecutive \( y \) values being constant, we can deduce that the rate of change (\( m \)) is 5. The relationships between the \( x \) and \( y \) values can then be inferred to fit a linear equation of the form:
[tex]\[ y = 5x \][/tex]
Hence, the table given represents a linear function.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.