Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine whether a table represents a linear function, we need to see if the changes in \( y \) values are consistent when the changes in \( x \) values are the same. In other words, a linear function will have constant differences between consecutive \( y \) values when \( x \) values increase by a constant amount.
Let's analyze the given table:
[tex]\[ \begin{tabular}{|c|c|} \hline [tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline 1 & 5 \\
\hline 2 & 10 \\
\hline 3 & 15 \\
\hline 4 & 20 \\
\hline 5 & 25 \\
\hline
\end{tabular}
\][/tex]
We start by calculating the differences between consecutive \( y \) values:
- Difference between \( y_2 \) and \( y_1 \) is \( 10 - 5 = 5 \)
- Difference between \( y_3 \) and \( y_2 \) is \( 15 - 10 = 5 \)
- Difference between \( y_4 \) and \( y_3 \) is \( 20 - 15 = 5 \)
- Difference between \( y_5 \) and \( y_4 \) is \( 25 - 20 = 5 \)
We observe that the differences between consecutive \( y \) values are all \( 5 \). This consistency in differences indicates that the function is linear.
To further confirm, let's consider the general form of a linear function, which is \( y = mx + b \). Here,
- \( m \) is the slope (rate of change)
- \( b \) is the y-intercept (the value of \( y \) when \( x = 0 \))
Given the differences between consecutive \( y \) values being constant, we can deduce that the rate of change (\( m \)) is 5. The relationships between the \( x \) and \( y \) values can then be inferred to fit a linear equation of the form:
[tex]\[ y = 5x \][/tex]
Hence, the table given represents a linear function.
Let's analyze the given table:
[tex]\[ \begin{tabular}{|c|c|} \hline [tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline 1 & 5 \\
\hline 2 & 10 \\
\hline 3 & 15 \\
\hline 4 & 20 \\
\hline 5 & 25 \\
\hline
\end{tabular}
\][/tex]
We start by calculating the differences between consecutive \( y \) values:
- Difference between \( y_2 \) and \( y_1 \) is \( 10 - 5 = 5 \)
- Difference between \( y_3 \) and \( y_2 \) is \( 15 - 10 = 5 \)
- Difference between \( y_4 \) and \( y_3 \) is \( 20 - 15 = 5 \)
- Difference between \( y_5 \) and \( y_4 \) is \( 25 - 20 = 5 \)
We observe that the differences between consecutive \( y \) values are all \( 5 \). This consistency in differences indicates that the function is linear.
To further confirm, let's consider the general form of a linear function, which is \( y = mx + b \). Here,
- \( m \) is the slope (rate of change)
- \( b \) is the y-intercept (the value of \( y \) when \( x = 0 \))
Given the differences between consecutive \( y \) values being constant, we can deduce that the rate of change (\( m \)) is 5. The relationships between the \( x \) and \( y \) values can then be inferred to fit a linear equation of the form:
[tex]\[ y = 5x \][/tex]
Hence, the table given represents a linear function.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.