Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the length of the rectangle given the area and the width, we proceed as follows:
Given:
- Area of the rectangle: \( A = x^3 - 5x^2 + 3x - 15 \)
- Width of the rectangle: \( W = x^2 + 3 \)
- Area \( = \) Length \( \times \) Width
We need to find the Length (\( L \)) of the rectangle. The formula can be rearranged to:
[tex]\[ L = \frac{A}{W} \][/tex]
We substitute the given expressions for \( A \) and \( W \):
[tex]\[ L = \frac{x^3 - 5x^2 + 3x - 15}{x^2 + 3} \][/tex]
To simplify this division, we perform polynomial division. Here are the detailed steps:
1. Divide the leading term of the numerator \( (x^3) \) by the leading term of the denominator \( (x^2) \):
[tex]\[ \frac{x^3}{x^2} = x \][/tex]
2. Multiply \( x \) by \( x^2 + 3 \) and subtract the result from the original polynomial:
[tex]\[ (x)(x^2 + 3) = x^3 + 3x \][/tex]
[tex]\[ (x^3 - 5x^2 + 3x - 15) - (x^3 + 3x) = x^3 - 5x^2 + 3x - 15 - x^3 - 3x \][/tex]
[tex]\[ = -5x^2 - 6x - 15 \][/tex]
3. Divide the new leading term of the result \( (-5x^2) \) by the leading term of the denominator \( (x^2) \):
[tex]\[ \frac{-5x^2}{x^2} = -5 \][/tex]
4. Multiply \( -5 \) by \( x^2 + 3 \) and subtract the result from the polynomial obtained in the previous step:
[tex]\[ (-5)(x^2 + 3) = -5x^2 - 15 \][/tex]
[tex]\[ (-5x^2 - 6x - 15) - (-5x^2 - 15) = -5x^2 - 6x - 15 + 5x^2 + 15 \][/tex]
[tex]\[ = -6x \][/tex]
The result is that the remainder is \(-6x\) and it's much smaller degree than the divisor. This confirms that the correct quotient is:
[tex]\[ L = x - 5 \][/tex]
Thus, the length of the rectangle is:
[tex]\[ \boxed{x - 5} \][/tex]
Given:
- Area of the rectangle: \( A = x^3 - 5x^2 + 3x - 15 \)
- Width of the rectangle: \( W = x^2 + 3 \)
- Area \( = \) Length \( \times \) Width
We need to find the Length (\( L \)) of the rectangle. The formula can be rearranged to:
[tex]\[ L = \frac{A}{W} \][/tex]
We substitute the given expressions for \( A \) and \( W \):
[tex]\[ L = \frac{x^3 - 5x^2 + 3x - 15}{x^2 + 3} \][/tex]
To simplify this division, we perform polynomial division. Here are the detailed steps:
1. Divide the leading term of the numerator \( (x^3) \) by the leading term of the denominator \( (x^2) \):
[tex]\[ \frac{x^3}{x^2} = x \][/tex]
2. Multiply \( x \) by \( x^2 + 3 \) and subtract the result from the original polynomial:
[tex]\[ (x)(x^2 + 3) = x^3 + 3x \][/tex]
[tex]\[ (x^3 - 5x^2 + 3x - 15) - (x^3 + 3x) = x^3 - 5x^2 + 3x - 15 - x^3 - 3x \][/tex]
[tex]\[ = -5x^2 - 6x - 15 \][/tex]
3. Divide the new leading term of the result \( (-5x^2) \) by the leading term of the denominator \( (x^2) \):
[tex]\[ \frac{-5x^2}{x^2} = -5 \][/tex]
4. Multiply \( -5 \) by \( x^2 + 3 \) and subtract the result from the polynomial obtained in the previous step:
[tex]\[ (-5)(x^2 + 3) = -5x^2 - 15 \][/tex]
[tex]\[ (-5x^2 - 6x - 15) - (-5x^2 - 15) = -5x^2 - 6x - 15 + 5x^2 + 15 \][/tex]
[tex]\[ = -6x \][/tex]
The result is that the remainder is \(-6x\) and it's much smaller degree than the divisor. This confirms that the correct quotient is:
[tex]\[ L = x - 5 \][/tex]
Thus, the length of the rectangle is:
[tex]\[ \boxed{x - 5} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.