Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

The area of a rectangle is [tex]x^3-5x^2+3x-15[/tex], and the width of the rectangle is [tex]x^2+3[/tex]. If area = length × width, what is the length of the rectangle?

A. [tex]x+5[/tex]
B. [tex]x-15[/tex]
C. [tex]x+15[/tex]
D. [tex]x-5[/tex]


Sagot :

To determine the length of the rectangle given the area and the width, we proceed as follows:

Given:
- Area of the rectangle: \( A = x^3 - 5x^2 + 3x - 15 \)
- Width of the rectangle: \( W = x^2 + 3 \)
- Area \( = \) Length \( \times \) Width

We need to find the Length (\( L \)) of the rectangle. The formula can be rearranged to:
[tex]\[ L = \frac{A}{W} \][/tex]

We substitute the given expressions for \( A \) and \( W \):
[tex]\[ L = \frac{x^3 - 5x^2 + 3x - 15}{x^2 + 3} \][/tex]

To simplify this division, we perform polynomial division. Here are the detailed steps:

1. Divide the leading term of the numerator \( (x^3) \) by the leading term of the denominator \( (x^2) \):
[tex]\[ \frac{x^3}{x^2} = x \][/tex]

2. Multiply \( x \) by \( x^2 + 3 \) and subtract the result from the original polynomial:
[tex]\[ (x)(x^2 + 3) = x^3 + 3x \][/tex]
[tex]\[ (x^3 - 5x^2 + 3x - 15) - (x^3 + 3x) = x^3 - 5x^2 + 3x - 15 - x^3 - 3x \][/tex]
[tex]\[ = -5x^2 - 6x - 15 \][/tex]

3. Divide the new leading term of the result \( (-5x^2) \) by the leading term of the denominator \( (x^2) \):
[tex]\[ \frac{-5x^2}{x^2} = -5 \][/tex]

4. Multiply \( -5 \) by \( x^2 + 3 \) and subtract the result from the polynomial obtained in the previous step:
[tex]\[ (-5)(x^2 + 3) = -5x^2 - 15 \][/tex]
[tex]\[ (-5x^2 - 6x - 15) - (-5x^2 - 15) = -5x^2 - 6x - 15 + 5x^2 + 15 \][/tex]
[tex]\[ = -6x \][/tex]

The result is that the remainder is \(-6x\) and it's much smaller degree than the divisor. This confirms that the correct quotient is:
[tex]\[ L = x - 5 \][/tex]

Thus, the length of the rectangle is:
[tex]\[ \boxed{x - 5} \][/tex]