Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's analyze the given question step by step to find the probability \( P(A \text{ and } B) \).
We are given the following table:
[tex]\[ \begin{tabular}{|c|c|c|} \hline Place & Is a city & Is in North America \\ \hline India & & \\ \hline Tokyo & [tex]$\checkmark$[/tex] & \\
\hline
Houston & [tex]$\checkmark$[/tex] & [tex]$\checkmark$[/tex] \\
\hline
Peru & & [tex]$\checkmark$[/tex] \\
\hline
New York & [tex]$\checkmark$[/tex] & [tex]$\checkmark$[/tex] \\
\hline
Tijuana & [tex]$\checkmark$[/tex] & [tex]$\checkmark$[/tex] \\
\hline
Canada & & \\
\hline
\end{tabular}
\][/tex]
### Step 1: Identify the Total Number of Places
Firstly, we count the total number of places listed in the table. They are:
1. India
2. Tokyo
3. Houston
4. Peru
5. New York
6. Tijuana
7. Canada
Thus, the total number of places is 7.
### Step 2: Identify Places that are Both Cities and in North America
Next, we need to identify which places satisfy both event \( A \) (the place is a city) and event \( B \) (the place is in North America). These places are:
- Houston
- New York
- Tijuana
Thus, there are 3 places that are both cities and in North America.
### Step 3: Calculate the Probability \( P(A \text{ and } B) \)
The probability \( P(A \text{ and } B) \) is the ratio of the number of places that are both cities and in North America to the total number of places.
[tex]\[ P(A \text{ and } B) = \frac{\text{Number of places that are both cities and in North America}}{\text{Total number of places}} \][/tex]
Substituting the values, we get:
[tex]\[ P(A \text{ and } B) = \frac{3}{7} \approx 0.42857142857142855 \][/tex]
### Conclusion
Therefore, the probability \( P(A \text{ and } B) \) is approximately \( 0.42857142857142855 \), which is closest to the answer:
[tex]\(\boxed{\frac{3}{7}}\)[/tex]
We are given the following table:
[tex]\[ \begin{tabular}{|c|c|c|} \hline Place & Is a city & Is in North America \\ \hline India & & \\ \hline Tokyo & [tex]$\checkmark$[/tex] & \\
\hline
Houston & [tex]$\checkmark$[/tex] & [tex]$\checkmark$[/tex] \\
\hline
Peru & & [tex]$\checkmark$[/tex] \\
\hline
New York & [tex]$\checkmark$[/tex] & [tex]$\checkmark$[/tex] \\
\hline
Tijuana & [tex]$\checkmark$[/tex] & [tex]$\checkmark$[/tex] \\
\hline
Canada & & \\
\hline
\end{tabular}
\][/tex]
### Step 1: Identify the Total Number of Places
Firstly, we count the total number of places listed in the table. They are:
1. India
2. Tokyo
3. Houston
4. Peru
5. New York
6. Tijuana
7. Canada
Thus, the total number of places is 7.
### Step 2: Identify Places that are Both Cities and in North America
Next, we need to identify which places satisfy both event \( A \) (the place is a city) and event \( B \) (the place is in North America). These places are:
- Houston
- New York
- Tijuana
Thus, there are 3 places that are both cities and in North America.
### Step 3: Calculate the Probability \( P(A \text{ and } B) \)
The probability \( P(A \text{ and } B) \) is the ratio of the number of places that are both cities and in North America to the total number of places.
[tex]\[ P(A \text{ and } B) = \frac{\text{Number of places that are both cities and in North America}}{\text{Total number of places}} \][/tex]
Substituting the values, we get:
[tex]\[ P(A \text{ and } B) = \frac{3}{7} \approx 0.42857142857142855 \][/tex]
### Conclusion
Therefore, the probability \( P(A \text{ and } B) \) is approximately \( 0.42857142857142855 \), which is closest to the answer:
[tex]\(\boxed{\frac{3}{7}}\)[/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.