At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the solutions for the system of equations:
[tex]\[ \left\{\begin{array}{r} x^2 + y^2 = 4 \\ x - y = 1 \end{array}\right. \][/tex]
we will solve this step-by-step:
1. Start with the second equation:
[tex]\[ x - y = 1 \][/tex]
2. Express \( x \) in terms of \( y \):
[tex]\[ x = y + 1 \][/tex]
3. Substitute \( x \) from the second equation (into the first equation):
[tex]\[ (y + 1)^2 + y^2 = 4 \][/tex]
4. Expand and simplify the equation:
[tex]\[ (y + 1)^2 + y^2 = 4 \\ (y^2 + 2y + 1) + y^2 = 4 \\ 2y^2 + 2y + 1 = 4 \][/tex]
5. Move all terms to one side to set up a quadratic equation:
[tex]\[ 2y^2 + 2y + 1 - 4 = 0 \\ 2y^2 + 2y - 3 = 0 \][/tex]
6. Solve the quadratic equation using the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) :
[tex]\[ a = 2, \; b = 2, \; c = -3 \][/tex]
[tex]\[ y = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 2 \cdot (-3)}}{2 \cdot 2} \\ y = \frac{-2 \pm \sqrt{4 + 24}}{4} \\ y = \frac{-2 \pm \sqrt{28}}{4} \\ y = \frac{-2 \pm 2\sqrt{7}}{4} \\ y = \frac{-1 \pm \sqrt{7}}{2} \][/tex]
So we have two possible values for \( y \):
[tex]\[ y_1 = \frac{-1 - \sqrt{7}}{2} \quad \text{and} \quad y_2 = \frac{-1 + \sqrt{7}}{2} \][/tex]
7. Substitute these values back into \( x = y + 1 \) to find the corresponding \( x \) values:
For \( y_1 = \frac{-1 - \sqrt{7}}{2} \):
[tex]\[ x_1 = \left( \frac{-1 - \sqrt{7}}{2} \right) + 1 = \frac{-1 - \sqrt{7} + 2}{2} = \frac{1 - \sqrt{7}}{2} \][/tex]
For \( y_2 = \frac{-1 + \sqrt{7}}{2} \):
[tex]\[ x_2 = \left( \frac{-1 + \sqrt{7}}{2} \right) + 1 = \frac{-1 + \sqrt{7} + 2}{2} = \frac{1 + \sqrt{7}}{2} \][/tex]
Thus, we have the solutions:
[tex]\[ \left( \frac{1 - \sqrt{7}}{2}, \frac{-1 - \sqrt{7}}{2} \right) \quad \text{and} \quad \left( \frac{1 + \sqrt{7}}{2}, \frac{-1 + \sqrt{7}}{2} \right) \][/tex]
Which graph represents the solutions:
To visualize the solutions, you would plot the points \(\left( \frac{1 - \sqrt{7}}{2}, \frac{-1 - \sqrt{7}}{2} \right)\) and \(\left( \frac{1 + \sqrt{7}}{2}, \frac{-1 + \sqrt{7}}{2} \right)\) on the coordinate plane along with the circle \(x^2 + y^2 = 4\) and the line \(x - y = 1\).
These points will lie on the intersection of the circle with radius 2 centered at the origin and the line [tex]\(x - y = 1\)[/tex]. The graphical representation will show where the line intersects the circle, indicating the solutions to the system.
[tex]\[ \left\{\begin{array}{r} x^2 + y^2 = 4 \\ x - y = 1 \end{array}\right. \][/tex]
we will solve this step-by-step:
1. Start with the second equation:
[tex]\[ x - y = 1 \][/tex]
2. Express \( x \) in terms of \( y \):
[tex]\[ x = y + 1 \][/tex]
3. Substitute \( x \) from the second equation (into the first equation):
[tex]\[ (y + 1)^2 + y^2 = 4 \][/tex]
4. Expand and simplify the equation:
[tex]\[ (y + 1)^2 + y^2 = 4 \\ (y^2 + 2y + 1) + y^2 = 4 \\ 2y^2 + 2y + 1 = 4 \][/tex]
5. Move all terms to one side to set up a quadratic equation:
[tex]\[ 2y^2 + 2y + 1 - 4 = 0 \\ 2y^2 + 2y - 3 = 0 \][/tex]
6. Solve the quadratic equation using the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) :
[tex]\[ a = 2, \; b = 2, \; c = -3 \][/tex]
[tex]\[ y = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 2 \cdot (-3)}}{2 \cdot 2} \\ y = \frac{-2 \pm \sqrt{4 + 24}}{4} \\ y = \frac{-2 \pm \sqrt{28}}{4} \\ y = \frac{-2 \pm 2\sqrt{7}}{4} \\ y = \frac{-1 \pm \sqrt{7}}{2} \][/tex]
So we have two possible values for \( y \):
[tex]\[ y_1 = \frac{-1 - \sqrt{7}}{2} \quad \text{and} \quad y_2 = \frac{-1 + \sqrt{7}}{2} \][/tex]
7. Substitute these values back into \( x = y + 1 \) to find the corresponding \( x \) values:
For \( y_1 = \frac{-1 - \sqrt{7}}{2} \):
[tex]\[ x_1 = \left( \frac{-1 - \sqrt{7}}{2} \right) + 1 = \frac{-1 - \sqrt{7} + 2}{2} = \frac{1 - \sqrt{7}}{2} \][/tex]
For \( y_2 = \frac{-1 + \sqrt{7}}{2} \):
[tex]\[ x_2 = \left( \frac{-1 + \sqrt{7}}{2} \right) + 1 = \frac{-1 + \sqrt{7} + 2}{2} = \frac{1 + \sqrt{7}}{2} \][/tex]
Thus, we have the solutions:
[tex]\[ \left( \frac{1 - \sqrt{7}}{2}, \frac{-1 - \sqrt{7}}{2} \right) \quad \text{and} \quad \left( \frac{1 + \sqrt{7}}{2}, \frac{-1 + \sqrt{7}}{2} \right) \][/tex]
Which graph represents the solutions:
To visualize the solutions, you would plot the points \(\left( \frac{1 - \sqrt{7}}{2}, \frac{-1 - \sqrt{7}}{2} \right)\) and \(\left( \frac{1 + \sqrt{7}}{2}, \frac{-1 + \sqrt{7}}{2} \right)\) on the coordinate plane along with the circle \(x^2 + y^2 = 4\) and the line \(x - y = 1\).
These points will lie on the intersection of the circle with radius 2 centered at the origin and the line [tex]\(x - y = 1\)[/tex]. The graphical representation will show where the line intersects the circle, indicating the solutions to the system.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.