Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

6. If [tex] x + \frac{1}{x} = \sqrt{5} [/tex], find [tex] x^2 + \frac{1}{x^2} [/tex] and [tex] x^4 + \frac{1}{x^4} [/tex].

Sagot :

To solve the problem, we'll follow a step-by-step approach, using the given condition \( x + \frac{1}{x} = \sqrt{5} \). We need to find values for \( x^2 + \frac{1}{x^2} \) and \( x^4 + \frac{1}{x^4} \).

### Step 1: Finding \( x^2 + \frac{1}{x^2} \)

Let's start by squaring both sides of the given equation:

[tex]\[ \left( x + \frac{1}{x} \right)^2 = (\sqrt{5})^2 \][/tex]

Expanding the left-hand side:

[tex]\[ x^2 + 2 \cdot x \cdot \frac{1}{x} + \frac{1}{x^2} = 5 \][/tex]

Since \( x \cdot \frac{1}{x} = 1 \), we simplify the equation to:

[tex]\[ x^2 + 2 + \frac{1}{x^2} = 5 \][/tex]

Subtract 2 from both sides:

[tex]\[ x^2 + \frac{1}{x^2} = 3 \][/tex]

### Step 2: Finding \( x^4 + \frac{1}{x^4} \)

To find \( x^4 + \frac{1}{x^4} \), we square \( x^2 + \frac{1}{x^2} \):

[tex]\[ \left( x^2 + \frac{1}{x^2} \right)^2 \][/tex]

We already found that \( x^2 + \frac{1}{x^2} = 3 \). Squaring this:

[tex]\[ (3)^2 = x^4 + 2 \cdot x^2 \cdot \frac{1}{x^2} + \frac{1}{x^4} \][/tex]

Since \( x^2 \cdot \frac{1}{x^2} = 1 \), we simplify the equation:

[tex]\[ 9 = x^4 + 2 + \frac{1}{x^4} \][/tex]

Subtract 2 from both sides:

[tex]\[ x^4 + \frac{1}{x^4} = 7 \][/tex]

### Conclusion

Based on the steps we followed:

[tex]\[ x^2 + \frac{1}{x^2} = 3 \][/tex]
[tex]\[ x^4 + \frac{1}{x^4} = 7 \][/tex]

Thus, we have found the required values as follows:

- \( x^2 + \frac{1}{x^2} = 3 \)
- [tex]\( x^4 + \frac{1}{x^4} = 7 \)[/tex]