Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the problem, we'll follow a step-by-step approach, using the given condition \( x + \frac{1}{x} = \sqrt{5} \). We need to find values for \( x^2 + \frac{1}{x^2} \) and \( x^4 + \frac{1}{x^4} \).
### Step 1: Finding \( x^2 + \frac{1}{x^2} \)
Let's start by squaring both sides of the given equation:
[tex]\[ \left( x + \frac{1}{x} \right)^2 = (\sqrt{5})^2 \][/tex]
Expanding the left-hand side:
[tex]\[ x^2 + 2 \cdot x \cdot \frac{1}{x} + \frac{1}{x^2} = 5 \][/tex]
Since \( x \cdot \frac{1}{x} = 1 \), we simplify the equation to:
[tex]\[ x^2 + 2 + \frac{1}{x^2} = 5 \][/tex]
Subtract 2 from both sides:
[tex]\[ x^2 + \frac{1}{x^2} = 3 \][/tex]
### Step 2: Finding \( x^4 + \frac{1}{x^4} \)
To find \( x^4 + \frac{1}{x^4} \), we square \( x^2 + \frac{1}{x^2} \):
[tex]\[ \left( x^2 + \frac{1}{x^2} \right)^2 \][/tex]
We already found that \( x^2 + \frac{1}{x^2} = 3 \). Squaring this:
[tex]\[ (3)^2 = x^4 + 2 \cdot x^2 \cdot \frac{1}{x^2} + \frac{1}{x^4} \][/tex]
Since \( x^2 \cdot \frac{1}{x^2} = 1 \), we simplify the equation:
[tex]\[ 9 = x^4 + 2 + \frac{1}{x^4} \][/tex]
Subtract 2 from both sides:
[tex]\[ x^4 + \frac{1}{x^4} = 7 \][/tex]
### Conclusion
Based on the steps we followed:
[tex]\[ x^2 + \frac{1}{x^2} = 3 \][/tex]
[tex]\[ x^4 + \frac{1}{x^4} = 7 \][/tex]
Thus, we have found the required values as follows:
- \( x^2 + \frac{1}{x^2} = 3 \)
- [tex]\( x^4 + \frac{1}{x^4} = 7 \)[/tex]
### Step 1: Finding \( x^2 + \frac{1}{x^2} \)
Let's start by squaring both sides of the given equation:
[tex]\[ \left( x + \frac{1}{x} \right)^2 = (\sqrt{5})^2 \][/tex]
Expanding the left-hand side:
[tex]\[ x^2 + 2 \cdot x \cdot \frac{1}{x} + \frac{1}{x^2} = 5 \][/tex]
Since \( x \cdot \frac{1}{x} = 1 \), we simplify the equation to:
[tex]\[ x^2 + 2 + \frac{1}{x^2} = 5 \][/tex]
Subtract 2 from both sides:
[tex]\[ x^2 + \frac{1}{x^2} = 3 \][/tex]
### Step 2: Finding \( x^4 + \frac{1}{x^4} \)
To find \( x^4 + \frac{1}{x^4} \), we square \( x^2 + \frac{1}{x^2} \):
[tex]\[ \left( x^2 + \frac{1}{x^2} \right)^2 \][/tex]
We already found that \( x^2 + \frac{1}{x^2} = 3 \). Squaring this:
[tex]\[ (3)^2 = x^4 + 2 \cdot x^2 \cdot \frac{1}{x^2} + \frac{1}{x^4} \][/tex]
Since \( x^2 \cdot \frac{1}{x^2} = 1 \), we simplify the equation:
[tex]\[ 9 = x^4 + 2 + \frac{1}{x^4} \][/tex]
Subtract 2 from both sides:
[tex]\[ x^4 + \frac{1}{x^4} = 7 \][/tex]
### Conclusion
Based on the steps we followed:
[tex]\[ x^2 + \frac{1}{x^2} = 3 \][/tex]
[tex]\[ x^4 + \frac{1}{x^4} = 7 \][/tex]
Thus, we have found the required values as follows:
- \( x^2 + \frac{1}{x^2} = 3 \)
- [tex]\( x^4 + \frac{1}{x^4} = 7 \)[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.