Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the problem, we'll follow a step-by-step approach, using the given condition \( x + \frac{1}{x} = \sqrt{5} \). We need to find values for \( x^2 + \frac{1}{x^2} \) and \( x^4 + \frac{1}{x^4} \).
### Step 1: Finding \( x^2 + \frac{1}{x^2} \)
Let's start by squaring both sides of the given equation:
[tex]\[ \left( x + \frac{1}{x} \right)^2 = (\sqrt{5})^2 \][/tex]
Expanding the left-hand side:
[tex]\[ x^2 + 2 \cdot x \cdot \frac{1}{x} + \frac{1}{x^2} = 5 \][/tex]
Since \( x \cdot \frac{1}{x} = 1 \), we simplify the equation to:
[tex]\[ x^2 + 2 + \frac{1}{x^2} = 5 \][/tex]
Subtract 2 from both sides:
[tex]\[ x^2 + \frac{1}{x^2} = 3 \][/tex]
### Step 2: Finding \( x^4 + \frac{1}{x^4} \)
To find \( x^4 + \frac{1}{x^4} \), we square \( x^2 + \frac{1}{x^2} \):
[tex]\[ \left( x^2 + \frac{1}{x^2} \right)^2 \][/tex]
We already found that \( x^2 + \frac{1}{x^2} = 3 \). Squaring this:
[tex]\[ (3)^2 = x^4 + 2 \cdot x^2 \cdot \frac{1}{x^2} + \frac{1}{x^4} \][/tex]
Since \( x^2 \cdot \frac{1}{x^2} = 1 \), we simplify the equation:
[tex]\[ 9 = x^4 + 2 + \frac{1}{x^4} \][/tex]
Subtract 2 from both sides:
[tex]\[ x^4 + \frac{1}{x^4} = 7 \][/tex]
### Conclusion
Based on the steps we followed:
[tex]\[ x^2 + \frac{1}{x^2} = 3 \][/tex]
[tex]\[ x^4 + \frac{1}{x^4} = 7 \][/tex]
Thus, we have found the required values as follows:
- \( x^2 + \frac{1}{x^2} = 3 \)
- [tex]\( x^4 + \frac{1}{x^4} = 7 \)[/tex]
### Step 1: Finding \( x^2 + \frac{1}{x^2} \)
Let's start by squaring both sides of the given equation:
[tex]\[ \left( x + \frac{1}{x} \right)^2 = (\sqrt{5})^2 \][/tex]
Expanding the left-hand side:
[tex]\[ x^2 + 2 \cdot x \cdot \frac{1}{x} + \frac{1}{x^2} = 5 \][/tex]
Since \( x \cdot \frac{1}{x} = 1 \), we simplify the equation to:
[tex]\[ x^2 + 2 + \frac{1}{x^2} = 5 \][/tex]
Subtract 2 from both sides:
[tex]\[ x^2 + \frac{1}{x^2} = 3 \][/tex]
### Step 2: Finding \( x^4 + \frac{1}{x^4} \)
To find \( x^4 + \frac{1}{x^4} \), we square \( x^2 + \frac{1}{x^2} \):
[tex]\[ \left( x^2 + \frac{1}{x^2} \right)^2 \][/tex]
We already found that \( x^2 + \frac{1}{x^2} = 3 \). Squaring this:
[tex]\[ (3)^2 = x^4 + 2 \cdot x^2 \cdot \frac{1}{x^2} + \frac{1}{x^4} \][/tex]
Since \( x^2 \cdot \frac{1}{x^2} = 1 \), we simplify the equation:
[tex]\[ 9 = x^4 + 2 + \frac{1}{x^4} \][/tex]
Subtract 2 from both sides:
[tex]\[ x^4 + \frac{1}{x^4} = 7 \][/tex]
### Conclusion
Based on the steps we followed:
[tex]\[ x^2 + \frac{1}{x^2} = 3 \][/tex]
[tex]\[ x^4 + \frac{1}{x^4} = 7 \][/tex]
Thus, we have found the required values as follows:
- \( x^2 + \frac{1}{x^2} = 3 \)
- [tex]\( x^4 + \frac{1}{x^4} = 7 \)[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.