Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve this problem, we need to identify the slope of the given line, determine the slope of a line that is perpendicular to it, and also determine the slope of a line that is parallel to it.
1. Identify the slope of the given line.
The given line equation is in the form:
[tex]\[ y = \frac{3}{4} - \frac{2}{3} x \][/tex]
In the slope-intercept form \(y = mx + b\), where \(m\) is the slope, the equation can be rewritten as:
[tex]\[ y = -\frac{2}{3} x + \frac{3}{4} \][/tex]
From this, we can see that the slope \(m\) of the given line is \(-\frac{2}{3}\).
2. Determine the slope of a line perpendicular to the given line.
The slope of a line that is perpendicular to another line is the negative reciprocal of the original slope. The negative reciprocal of \(-\frac{2}{3}\) is:
[tex]\[ -\left(\frac{1}{-\frac{2}{3}}\right) = \frac{3}{2} \][/tex]
3. Determine the slope of a line parallel to the given line.
The slope of a line that is parallel to another line is the same as the slope of the original line. Therefore, the slope of a line parallel to the given line is:
[tex]\[ -\frac{2}{3} \][/tex]
Thus, the solutions are:
- The slope of a line perpendicular to the given line: \(\boxed{1.5}\)
- The slope of a line parallel to the given line: [tex]\(\boxed{-0.6666666666666666}\)[/tex]
1. Identify the slope of the given line.
The given line equation is in the form:
[tex]\[ y = \frac{3}{4} - \frac{2}{3} x \][/tex]
In the slope-intercept form \(y = mx + b\), where \(m\) is the slope, the equation can be rewritten as:
[tex]\[ y = -\frac{2}{3} x + \frac{3}{4} \][/tex]
From this, we can see that the slope \(m\) of the given line is \(-\frac{2}{3}\).
2. Determine the slope of a line perpendicular to the given line.
The slope of a line that is perpendicular to another line is the negative reciprocal of the original slope. The negative reciprocal of \(-\frac{2}{3}\) is:
[tex]\[ -\left(\frac{1}{-\frac{2}{3}}\right) = \frac{3}{2} \][/tex]
3. Determine the slope of a line parallel to the given line.
The slope of a line that is parallel to another line is the same as the slope of the original line. Therefore, the slope of a line parallel to the given line is:
[tex]\[ -\frac{2}{3} \][/tex]
Thus, the solutions are:
- The slope of a line perpendicular to the given line: \(\boxed{1.5}\)
- The slope of a line parallel to the given line: [tex]\(\boxed{-0.6666666666666666}\)[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.