Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the values of \( x \) for which the quotient
[tex]\[ \frac{\sqrt{6(x-1)}}{\sqrt{3x^2}} \][/tex]
is defined, we need to analyze the conditions under which both the numerator and the denominator are defined, as well as when the denominator is non-zero.
1. Numerator Condition:
[tex]\[ \sqrt{6(x-1)} \][/tex]
For the square root function to be defined, the expression inside the square root must be non-negative:
[tex]\[ 6(x-1) \geq 0 \][/tex]
Dividing both sides by 6, we get:
[tex]\[ x - 1 \geq 0 \][/tex]
Adding 1 to both sides, we find:
[tex]\[ x \geq 1 \][/tex]
2. Denominator Condition:
[tex]\[ \sqrt{3x^2} \][/tex]
The square root function itself is defined for all real values \( x \) because \( x^2 \) is always non-negative. However, since this expression is in the denominator, it must be non-zero:
[tex]\[ \sqrt{3x^2} \neq 0 \][/tex]
Simplifying inside the square root, we get:
[tex]\[ 3x^2 \neq 0 \][/tex]
This implies:
[tex]\[ x \neq 0 \][/tex]
3. Combined Conditions:
We need both conditions to be satisfied simultaneously:
- The numerator \(\sqrt{6(x-1)}\) requires \( x \geq 1 \).
- The denominator \(\sqrt{3x^2}\) requires \( x \neq 0 \).
Considering both conditions together, \( x = 0 \) is excluded from the valid range, but since \( x \geq 1 \) already excludes \( x = 0 \), the final condition is:
[tex]\[ x \geq 1 \][/tex]
Hence, the inequality representing all values of \( x \) for which the quotient \(\frac{\sqrt{6(x-1)}}{\sqrt{3x^2}}\) is defined is:
[tex]\[ \boxed{x \geq 1} \][/tex]
Which corresponds to option C.
[tex]\[ \frac{\sqrt{6(x-1)}}{\sqrt{3x^2}} \][/tex]
is defined, we need to analyze the conditions under which both the numerator and the denominator are defined, as well as when the denominator is non-zero.
1. Numerator Condition:
[tex]\[ \sqrt{6(x-1)} \][/tex]
For the square root function to be defined, the expression inside the square root must be non-negative:
[tex]\[ 6(x-1) \geq 0 \][/tex]
Dividing both sides by 6, we get:
[tex]\[ x - 1 \geq 0 \][/tex]
Adding 1 to both sides, we find:
[tex]\[ x \geq 1 \][/tex]
2. Denominator Condition:
[tex]\[ \sqrt{3x^2} \][/tex]
The square root function itself is defined for all real values \( x \) because \( x^2 \) is always non-negative. However, since this expression is in the denominator, it must be non-zero:
[tex]\[ \sqrt{3x^2} \neq 0 \][/tex]
Simplifying inside the square root, we get:
[tex]\[ 3x^2 \neq 0 \][/tex]
This implies:
[tex]\[ x \neq 0 \][/tex]
3. Combined Conditions:
We need both conditions to be satisfied simultaneously:
- The numerator \(\sqrt{6(x-1)}\) requires \( x \geq 1 \).
- The denominator \(\sqrt{3x^2}\) requires \( x \neq 0 \).
Considering both conditions together, \( x = 0 \) is excluded from the valid range, but since \( x \geq 1 \) already excludes \( x = 0 \), the final condition is:
[tex]\[ x \geq 1 \][/tex]
Hence, the inequality representing all values of \( x \) for which the quotient \(\frac{\sqrt{6(x-1)}}{\sqrt{3x^2}}\) is defined is:
[tex]\[ \boxed{x \geq 1} \][/tex]
Which corresponds to option C.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.