Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the values of \( x \) for which the quotient
[tex]\[ \frac{\sqrt{6(x-1)}}{\sqrt{3x^2}} \][/tex]
is defined, we need to analyze the conditions under which both the numerator and the denominator are defined, as well as when the denominator is non-zero.
1. Numerator Condition:
[tex]\[ \sqrt{6(x-1)} \][/tex]
For the square root function to be defined, the expression inside the square root must be non-negative:
[tex]\[ 6(x-1) \geq 0 \][/tex]
Dividing both sides by 6, we get:
[tex]\[ x - 1 \geq 0 \][/tex]
Adding 1 to both sides, we find:
[tex]\[ x \geq 1 \][/tex]
2. Denominator Condition:
[tex]\[ \sqrt{3x^2} \][/tex]
The square root function itself is defined for all real values \( x \) because \( x^2 \) is always non-negative. However, since this expression is in the denominator, it must be non-zero:
[tex]\[ \sqrt{3x^2} \neq 0 \][/tex]
Simplifying inside the square root, we get:
[tex]\[ 3x^2 \neq 0 \][/tex]
This implies:
[tex]\[ x \neq 0 \][/tex]
3. Combined Conditions:
We need both conditions to be satisfied simultaneously:
- The numerator \(\sqrt{6(x-1)}\) requires \( x \geq 1 \).
- The denominator \(\sqrt{3x^2}\) requires \( x \neq 0 \).
Considering both conditions together, \( x = 0 \) is excluded from the valid range, but since \( x \geq 1 \) already excludes \( x = 0 \), the final condition is:
[tex]\[ x \geq 1 \][/tex]
Hence, the inequality representing all values of \( x \) for which the quotient \(\frac{\sqrt{6(x-1)}}{\sqrt{3x^2}}\) is defined is:
[tex]\[ \boxed{x \geq 1} \][/tex]
Which corresponds to option C.
[tex]\[ \frac{\sqrt{6(x-1)}}{\sqrt{3x^2}} \][/tex]
is defined, we need to analyze the conditions under which both the numerator and the denominator are defined, as well as when the denominator is non-zero.
1. Numerator Condition:
[tex]\[ \sqrt{6(x-1)} \][/tex]
For the square root function to be defined, the expression inside the square root must be non-negative:
[tex]\[ 6(x-1) \geq 0 \][/tex]
Dividing both sides by 6, we get:
[tex]\[ x - 1 \geq 0 \][/tex]
Adding 1 to both sides, we find:
[tex]\[ x \geq 1 \][/tex]
2. Denominator Condition:
[tex]\[ \sqrt{3x^2} \][/tex]
The square root function itself is defined for all real values \( x \) because \( x^2 \) is always non-negative. However, since this expression is in the denominator, it must be non-zero:
[tex]\[ \sqrt{3x^2} \neq 0 \][/tex]
Simplifying inside the square root, we get:
[tex]\[ 3x^2 \neq 0 \][/tex]
This implies:
[tex]\[ x \neq 0 \][/tex]
3. Combined Conditions:
We need both conditions to be satisfied simultaneously:
- The numerator \(\sqrt{6(x-1)}\) requires \( x \geq 1 \).
- The denominator \(\sqrt{3x^2}\) requires \( x \neq 0 \).
Considering both conditions together, \( x = 0 \) is excluded from the valid range, but since \( x \geq 1 \) already excludes \( x = 0 \), the final condition is:
[tex]\[ x \geq 1 \][/tex]
Hence, the inequality representing all values of \( x \) for which the quotient \(\frac{\sqrt{6(x-1)}}{\sqrt{3x^2}}\) is defined is:
[tex]\[ \boxed{x \geq 1} \][/tex]
Which corresponds to option C.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.