Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the values of \( x \) for which the quotient
[tex]\[ \frac{\sqrt{6(x-1)}}{\sqrt{3x^2}} \][/tex]
is defined, we need to analyze the conditions under which both the numerator and the denominator are defined, as well as when the denominator is non-zero.
1. Numerator Condition:
[tex]\[ \sqrt{6(x-1)} \][/tex]
For the square root function to be defined, the expression inside the square root must be non-negative:
[tex]\[ 6(x-1) \geq 0 \][/tex]
Dividing both sides by 6, we get:
[tex]\[ x - 1 \geq 0 \][/tex]
Adding 1 to both sides, we find:
[tex]\[ x \geq 1 \][/tex]
2. Denominator Condition:
[tex]\[ \sqrt{3x^2} \][/tex]
The square root function itself is defined for all real values \( x \) because \( x^2 \) is always non-negative. However, since this expression is in the denominator, it must be non-zero:
[tex]\[ \sqrt{3x^2} \neq 0 \][/tex]
Simplifying inside the square root, we get:
[tex]\[ 3x^2 \neq 0 \][/tex]
This implies:
[tex]\[ x \neq 0 \][/tex]
3. Combined Conditions:
We need both conditions to be satisfied simultaneously:
- The numerator \(\sqrt{6(x-1)}\) requires \( x \geq 1 \).
- The denominator \(\sqrt{3x^2}\) requires \( x \neq 0 \).
Considering both conditions together, \( x = 0 \) is excluded from the valid range, but since \( x \geq 1 \) already excludes \( x = 0 \), the final condition is:
[tex]\[ x \geq 1 \][/tex]
Hence, the inequality representing all values of \( x \) for which the quotient \(\frac{\sqrt{6(x-1)}}{\sqrt{3x^2}}\) is defined is:
[tex]\[ \boxed{x \geq 1} \][/tex]
Which corresponds to option C.
[tex]\[ \frac{\sqrt{6(x-1)}}{\sqrt{3x^2}} \][/tex]
is defined, we need to analyze the conditions under which both the numerator and the denominator are defined, as well as when the denominator is non-zero.
1. Numerator Condition:
[tex]\[ \sqrt{6(x-1)} \][/tex]
For the square root function to be defined, the expression inside the square root must be non-negative:
[tex]\[ 6(x-1) \geq 0 \][/tex]
Dividing both sides by 6, we get:
[tex]\[ x - 1 \geq 0 \][/tex]
Adding 1 to both sides, we find:
[tex]\[ x \geq 1 \][/tex]
2. Denominator Condition:
[tex]\[ \sqrt{3x^2} \][/tex]
The square root function itself is defined for all real values \( x \) because \( x^2 \) is always non-negative. However, since this expression is in the denominator, it must be non-zero:
[tex]\[ \sqrt{3x^2} \neq 0 \][/tex]
Simplifying inside the square root, we get:
[tex]\[ 3x^2 \neq 0 \][/tex]
This implies:
[tex]\[ x \neq 0 \][/tex]
3. Combined Conditions:
We need both conditions to be satisfied simultaneously:
- The numerator \(\sqrt{6(x-1)}\) requires \( x \geq 1 \).
- The denominator \(\sqrt{3x^2}\) requires \( x \neq 0 \).
Considering both conditions together, \( x = 0 \) is excluded from the valid range, but since \( x \geq 1 \) already excludes \( x = 0 \), the final condition is:
[tex]\[ x \geq 1 \][/tex]
Hence, the inequality representing all values of \( x \) for which the quotient \(\frac{\sqrt{6(x-1)}}{\sqrt{3x^2}}\) is defined is:
[tex]\[ \boxed{x \geq 1} \][/tex]
Which corresponds to option C.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.