Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine which points Vera can use to graph the line with the given characteristics, we follow these steps:
1. Identify the line equation: The line passes through the point \((0, 2)\) and has a slope of \(\frac{2}{3}\). Therefore, the equation of the line in slope-intercept form \(y = mx + b\) is:
[tex]\[ y = \frac{2}{3}x + 2 \][/tex]
2. Check each point: We will substitute the \(x\) and \(y\) coordinates of each point into the line equation to see if they satisfy it.
- Point 1: \((-3, 0)\)
[tex]\[ y = \frac{2}{3}(-3) + 2 = -2 + 2 = 0 \][/tex]
Since \(0 = 0\), the point \((-3, 0)\) lies on the line.
- Point 2: \((-2, -3)\)
[tex]\[ y = \frac{2}{3}(-2) + 2 = -\frac{4}{3} + 2 = \frac{-4 + 6}{3} = \frac{2}{3} \][/tex]
Since \(\frac{2}{3} \neq -3\), the point \((-2, -3)\) does not lie on the line.
- Point 3: \((2, 5)\)
[tex]\[ y = \frac{2}{3}(2) + 2 = \frac{4}{3} + 2 = \frac{4}{3} + \frac{6}{3} = \frac{10}{3} \][/tex]
Since \(\frac{10}{3} \neq 5\), the point \((2, 5)\) does not lie on the line.
- Point 4: \((3, 4)\)
[tex]\[ y = \frac{2}{3}(3) + 2 = 2 + 2 = 4 \][/tex]
Since \(4 = 4\), the point \((3, 4)\) lies on the line.
- Point 5: \((6, 6)\)
[tex]\[ y = \frac{2}{3}(6) + 2 = 4 + 2 = 6 \][/tex]
Since \(6 = 6\), the point \((6, 6)\) lies on the line.
3. Conclusion: The points that lie on the line are:
[tex]\[ (-3, 0), \; (3, 4), \; (6, 6) \][/tex]
Vera could use these three points to graph the line successfully.
1. Identify the line equation: The line passes through the point \((0, 2)\) and has a slope of \(\frac{2}{3}\). Therefore, the equation of the line in slope-intercept form \(y = mx + b\) is:
[tex]\[ y = \frac{2}{3}x + 2 \][/tex]
2. Check each point: We will substitute the \(x\) and \(y\) coordinates of each point into the line equation to see if they satisfy it.
- Point 1: \((-3, 0)\)
[tex]\[ y = \frac{2}{3}(-3) + 2 = -2 + 2 = 0 \][/tex]
Since \(0 = 0\), the point \((-3, 0)\) lies on the line.
- Point 2: \((-2, -3)\)
[tex]\[ y = \frac{2}{3}(-2) + 2 = -\frac{4}{3} + 2 = \frac{-4 + 6}{3} = \frac{2}{3} \][/tex]
Since \(\frac{2}{3} \neq -3\), the point \((-2, -3)\) does not lie on the line.
- Point 3: \((2, 5)\)
[tex]\[ y = \frac{2}{3}(2) + 2 = \frac{4}{3} + 2 = \frac{4}{3} + \frac{6}{3} = \frac{10}{3} \][/tex]
Since \(\frac{10}{3} \neq 5\), the point \((2, 5)\) does not lie on the line.
- Point 4: \((3, 4)\)
[tex]\[ y = \frac{2}{3}(3) + 2 = 2 + 2 = 4 \][/tex]
Since \(4 = 4\), the point \((3, 4)\) lies on the line.
- Point 5: \((6, 6)\)
[tex]\[ y = \frac{2}{3}(6) + 2 = 4 + 2 = 6 \][/tex]
Since \(6 = 6\), the point \((6, 6)\) lies on the line.
3. Conclusion: The points that lie on the line are:
[tex]\[ (-3, 0), \; (3, 4), \; (6, 6) \][/tex]
Vera could use these three points to graph the line successfully.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.