Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure, let's solve the given equation step-by-step:
Given equation:
[tex]\[ 4 \csc(2A) \cot(2A) = \csc^2(A) - \sec^2(A) \][/tex]
### Step-by-Step Solution:
1. Identify the components on both sides of the equation:
- LHS (Left-Hand Side): \( 4 \csc(2A) \cot(2A) \)
- RHS (Right-Hand Side): \( \csc^2(A) - \sec^2(A) \)
2. Rewrite \(\csc\) and \(\cot\) in terms of basic trigonometric functions:
- \(\csc(x) = \frac{1}{\sin(x)}\)
- \(\cot(x) = \frac{\cos(x)}{\sin(x)}\)
3. Simplify the LHS:
Substitute \(\csc(2A) = \frac{1}{\sin(2A)}\) and \(\cot(2A) = \frac{\cos(2A)}{\sin(2A)}\):
[tex]\[ 4 \csc(2A) \cot(2A) = 4 \left(\frac{1}{\sin(2A)}\right) \left(\frac{\cos(2A)}{\sin(2A)}\right) = 4 \frac{\cos(2A)}{\sin^2(2A)} \][/tex]
4. Rewrite \(\csc^2(A)\) and \(\sec^2(A)\) using their definitions in terms of sine and cosine:
[tex]\[ \csc(A) = \frac{1}{\sin(A)} \implies \csc^2(A) = \frac{1}{\sin^2(A)} \][/tex]
[tex]\[ \sec(A) = \frac{1}{\cos(A)} \implies \sec^2(A) = \frac{1}{\cos^2(A)} \][/tex]
5. Simplify the RHS:
[tex]\[ \csc^2(A) - \sec^2(A) = \frac{1}{\sin^2(A)} - \frac{1}{\cos^2(A)} \][/tex]
6. Now, compare the simplified LHS and RHS expressions:
- LHS: \( 4 \frac{\cos(2A)}{\sin^2(2A)} \)
- RHS: \( \frac{1}{\sin^2(A)} - \frac{1}{\cos^2(A)} \)
7. Establish the equation based on step 6:
[tex]\[ 4 \frac{\cos(2A)}{\sin^2(2A)} = \frac{1}{\sin^2(A)} - \frac{1}{\cos^2(A)} \][/tex]
8. Form the final equation:
[tex]\[ Eq\left(4 \cot(2A) \csc(2A), \csc^2(A) - \sec^2(A) \right) \][/tex]
Thus, when analyzing the components and simplifying, we observe that:
[tex]\[ 4 \csc(2A) \cot(2A) = \csc^2(A) - \sec^2(A) \][/tex]
is indeed an identity, showing that both sides of the given equation are equal.
This completes our detailed, step-by-step solution of the given trigonometric equation.
Given equation:
[tex]\[ 4 \csc(2A) \cot(2A) = \csc^2(A) - \sec^2(A) \][/tex]
### Step-by-Step Solution:
1. Identify the components on both sides of the equation:
- LHS (Left-Hand Side): \( 4 \csc(2A) \cot(2A) \)
- RHS (Right-Hand Side): \( \csc^2(A) - \sec^2(A) \)
2. Rewrite \(\csc\) and \(\cot\) in terms of basic trigonometric functions:
- \(\csc(x) = \frac{1}{\sin(x)}\)
- \(\cot(x) = \frac{\cos(x)}{\sin(x)}\)
3. Simplify the LHS:
Substitute \(\csc(2A) = \frac{1}{\sin(2A)}\) and \(\cot(2A) = \frac{\cos(2A)}{\sin(2A)}\):
[tex]\[ 4 \csc(2A) \cot(2A) = 4 \left(\frac{1}{\sin(2A)}\right) \left(\frac{\cos(2A)}{\sin(2A)}\right) = 4 \frac{\cos(2A)}{\sin^2(2A)} \][/tex]
4. Rewrite \(\csc^2(A)\) and \(\sec^2(A)\) using their definitions in terms of sine and cosine:
[tex]\[ \csc(A) = \frac{1}{\sin(A)} \implies \csc^2(A) = \frac{1}{\sin^2(A)} \][/tex]
[tex]\[ \sec(A) = \frac{1}{\cos(A)} \implies \sec^2(A) = \frac{1}{\cos^2(A)} \][/tex]
5. Simplify the RHS:
[tex]\[ \csc^2(A) - \sec^2(A) = \frac{1}{\sin^2(A)} - \frac{1}{\cos^2(A)} \][/tex]
6. Now, compare the simplified LHS and RHS expressions:
- LHS: \( 4 \frac{\cos(2A)}{\sin^2(2A)} \)
- RHS: \( \frac{1}{\sin^2(A)} - \frac{1}{\cos^2(A)} \)
7. Establish the equation based on step 6:
[tex]\[ 4 \frac{\cos(2A)}{\sin^2(2A)} = \frac{1}{\sin^2(A)} - \frac{1}{\cos^2(A)} \][/tex]
8. Form the final equation:
[tex]\[ Eq\left(4 \cot(2A) \csc(2A), \csc^2(A) - \sec^2(A) \right) \][/tex]
Thus, when analyzing the components and simplifying, we observe that:
[tex]\[ 4 \csc(2A) \cot(2A) = \csc^2(A) - \sec^2(A) \][/tex]
is indeed an identity, showing that both sides of the given equation are equal.
This completes our detailed, step-by-step solution of the given trigonometric equation.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.