Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To graph the system of inequalities \( 4x - y \geq 4 \) and \( y < 2 \), let's follow a detailed step-by-step approach.
### Step 1: Rewrite the Inequalities
1. For the first inequality \( 4x - y \geq 4 \):
- Rearrange it to solve for \( y \):
[tex]\[ 4x - y \geq 4 \implies y \leq 4x - 4 \][/tex]
- This represents a line \( y = 4x - 4 \) with a shaded region below or on the line.
2. For the second inequality \( y < 2 \):
- This inequality is already solved for \( y \):
[tex]\[ y < 2 \][/tex]
- This represents a horizontal line \( y = 2 \) with a shaded region below the line.
### Step 2: Identify the Boundary Lines
1. Boundary for the first inequality:
- Line equation: \( y = 4x - 4 \).
2. Boundary for the second inequality:
- Line equation: \( y = 2 \).
### Step 3: Graph the Boundary Lines
1. Graph \( y = 4x - 4 \):
- To plot this line, find two points:
- When \( x = 0 \):
[tex]\[ y = 4(0) - 4 = -4 \implies (0, -4) \][/tex]
- When \( x = 1 \):
[tex]\[ y = 4(1) - 4 = 0 \implies (1, 0) \][/tex]
- Draw the line through these points. Since the inequality is \( \geq \), the line will be solid.
2. Graph \( y = 2 \):
- This is a horizontal line passing through \( y = 2 \).
- Draw a dashed line (since the inequality is \( < \)) for \( y = 2 \).
### Step 4: Shade the Feasible Region
1. For \( y \leq 4x - 4 \):
- Shade the region below or on the solid line \( y = 4x - 4 \).
2. For \( y < 2 \):
- Shade the region below the dashed line \( y = 2 \).
### Step 5: Determine the Intersection
- The solution to the system of inequalities is the region where the shaded areas overlap. This gives us the final feasible region.
### Step 6: Final Graph
- The intersection of the two shaded regions is the feasible region bounded by \( y = 4x - 4 \) and below \( y = 2 \).
### Summary of the Boundary Equations
- \( 4x - y - 4 = 0 \) which simplifies to \( y = 4x - 4 \).
- \( y = 2 \).
By following these steps, you should be able to graph the system of inequalities [tex]\( 4 x - y \geq 4 \text{ and } y < 2 \)[/tex] and identify the feasible region which satisfies both inequalities.
### Step 1: Rewrite the Inequalities
1. For the first inequality \( 4x - y \geq 4 \):
- Rearrange it to solve for \( y \):
[tex]\[ 4x - y \geq 4 \implies y \leq 4x - 4 \][/tex]
- This represents a line \( y = 4x - 4 \) with a shaded region below or on the line.
2. For the second inequality \( y < 2 \):
- This inequality is already solved for \( y \):
[tex]\[ y < 2 \][/tex]
- This represents a horizontal line \( y = 2 \) with a shaded region below the line.
### Step 2: Identify the Boundary Lines
1. Boundary for the first inequality:
- Line equation: \( y = 4x - 4 \).
2. Boundary for the second inequality:
- Line equation: \( y = 2 \).
### Step 3: Graph the Boundary Lines
1. Graph \( y = 4x - 4 \):
- To plot this line, find two points:
- When \( x = 0 \):
[tex]\[ y = 4(0) - 4 = -4 \implies (0, -4) \][/tex]
- When \( x = 1 \):
[tex]\[ y = 4(1) - 4 = 0 \implies (1, 0) \][/tex]
- Draw the line through these points. Since the inequality is \( \geq \), the line will be solid.
2. Graph \( y = 2 \):
- This is a horizontal line passing through \( y = 2 \).
- Draw a dashed line (since the inequality is \( < \)) for \( y = 2 \).
### Step 4: Shade the Feasible Region
1. For \( y \leq 4x - 4 \):
- Shade the region below or on the solid line \( y = 4x - 4 \).
2. For \( y < 2 \):
- Shade the region below the dashed line \( y = 2 \).
### Step 5: Determine the Intersection
- The solution to the system of inequalities is the region where the shaded areas overlap. This gives us the final feasible region.
### Step 6: Final Graph
- The intersection of the two shaded regions is the feasible region bounded by \( y = 4x - 4 \) and below \( y = 2 \).
### Summary of the Boundary Equations
- \( 4x - y - 4 = 0 \) which simplifies to \( y = 4x - 4 \).
- \( y = 2 \).
By following these steps, you should be able to graph the system of inequalities [tex]\( 4 x - y \geq 4 \text{ and } y < 2 \)[/tex] and identify the feasible region which satisfies both inequalities.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.