Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which function has its vertex at the origin, we need to analyze each function in detail and find their respective vertices.
1. For the function \( f(x) = (x + 4)^2 \):
- This is a quadratic function in vertex form, which is generally written as \( f(x) = (x - h)^2 + k \), where \((h, k)\) is the vertex.
- For \( f(x) = (x + 4)^2 \), we can rewrite it as \( f(x) = (x - (-4))^2 \).
- Therefore, the vertex is at \( (-4, 0) \).
2. For the function \( f(x) = x(x - 4) \):
- First, expand the function to \( f(x) = x^2 - 4x \).
- This function is in the standard quadratic form \( ax^2 + bx + c \).
- The vertex of a quadratic function \( ax^2 + bx + c \) is given by the formula \( x = -\frac{b}{2a} \).
- Here, \( a = 1 \) and \( b = -4 \), so \( x = -\frac{-4}{2 \cdot 1} = 2 \).
- Substitute \( x = 2 \) back into the function to find the y-coordinate: \( f(2) = 2(2 - 4) = 2(-2) = -4 \).
- Therefore, the vertex is at \( (2, -4) \).
3. For the function \( f(x) = (x - 4)(x + 4) \):
- Expand the function to \( f(x) = x^2 - 16 \).
- This function is also in the standard quadratic form \( ax^2 + bx + c \) with \( a = 1 \), \( b = 0 \), and \( c = -16 \).
- The vertex of a quadratic function \( ax^2 + bx + c \) is given by the formula \( x = -\frac{b}{2a} \).
- Here, \( b = 0 \), so \( x = -\frac{0}{2 \cdot 1} = 0 \).
- Substitute \( x = 0 \) back into the function to find the y-coordinate: \( f(0) = (0 - 4)(0 + 4) = (-4)(4) = -16 \).
- Therefore, the vertex is at \( (0, -16) \).
4. For the function \( f(x) = -x^2 \):
- This function is also in the standard quadratic form \( ax^2 + bx + c \) with \( a = -1 \), \( b = 0 \), and \( c = 0 \).
- The vertex of a quadratic function \( ax^2 + bx + c \) is given by the formula \( x = -\frac{b}{2a} \).
- Here, \( b = 0 \), so \( x = -\frac{0}{2 \cdot (-1)} = 0 \).
- Substitute \( x = 0 \) back into the function to find the y-coordinate: \( f(0) = -0^2 = 0 \).
- Therefore, the vertex is at \( (0, 0) \).
Given this analysis, the function \( f(x) = -x^2 \) has its vertex at the origin \( (0,0) \).
The correct function with a vertex at the origin is:
[tex]\[ f(x) = -x^2 \][/tex]
1. For the function \( f(x) = (x + 4)^2 \):
- This is a quadratic function in vertex form, which is generally written as \( f(x) = (x - h)^2 + k \), where \((h, k)\) is the vertex.
- For \( f(x) = (x + 4)^2 \), we can rewrite it as \( f(x) = (x - (-4))^2 \).
- Therefore, the vertex is at \( (-4, 0) \).
2. For the function \( f(x) = x(x - 4) \):
- First, expand the function to \( f(x) = x^2 - 4x \).
- This function is in the standard quadratic form \( ax^2 + bx + c \).
- The vertex of a quadratic function \( ax^2 + bx + c \) is given by the formula \( x = -\frac{b}{2a} \).
- Here, \( a = 1 \) and \( b = -4 \), so \( x = -\frac{-4}{2 \cdot 1} = 2 \).
- Substitute \( x = 2 \) back into the function to find the y-coordinate: \( f(2) = 2(2 - 4) = 2(-2) = -4 \).
- Therefore, the vertex is at \( (2, -4) \).
3. For the function \( f(x) = (x - 4)(x + 4) \):
- Expand the function to \( f(x) = x^2 - 16 \).
- This function is also in the standard quadratic form \( ax^2 + bx + c \) with \( a = 1 \), \( b = 0 \), and \( c = -16 \).
- The vertex of a quadratic function \( ax^2 + bx + c \) is given by the formula \( x = -\frac{b}{2a} \).
- Here, \( b = 0 \), so \( x = -\frac{0}{2 \cdot 1} = 0 \).
- Substitute \( x = 0 \) back into the function to find the y-coordinate: \( f(0) = (0 - 4)(0 + 4) = (-4)(4) = -16 \).
- Therefore, the vertex is at \( (0, -16) \).
4. For the function \( f(x) = -x^2 \):
- This function is also in the standard quadratic form \( ax^2 + bx + c \) with \( a = -1 \), \( b = 0 \), and \( c = 0 \).
- The vertex of a quadratic function \( ax^2 + bx + c \) is given by the formula \( x = -\frac{b}{2a} \).
- Here, \( b = 0 \), so \( x = -\frac{0}{2 \cdot (-1)} = 0 \).
- Substitute \( x = 0 \) back into the function to find the y-coordinate: \( f(0) = -0^2 = 0 \).
- Therefore, the vertex is at \( (0, 0) \).
Given this analysis, the function \( f(x) = -x^2 \) has its vertex at the origin \( (0,0) \).
The correct function with a vertex at the origin is:
[tex]\[ f(x) = -x^2 \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.