At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine which statements are true about the linear inequality \( y > \frac{3}{4} x - 2 \), let's analyze it step-by-step:
1. The slope of the line is -2.
- This statement is false. The slope of the line is given by the coefficient of \( x \) in the inequality \( y = \frac{3}{4} x - 2 \). Therefore, the correct slope is \(\frac{3}{4}\), not -2.
2. The graph of \( y > \frac{3}{4} x - 2 \) is a dashed line.
- This statement is true. The inequality is a strict inequality (greater than) which means the line itself is not included in the solution set. Thus, it is represented by a dashed line.
3. The area below the line is shaded.
- This statement is false. For the inequality \( y > \frac{3}{4} x - 2 \), the region above the line is shaded because the inequality is "greater than" \( \frac{3}{4} x - 2 \).
4. One solution to the inequality is \((0,0)\).
- This statement is true. To check if \((0,0)\) is a solution, substitute \( x = 0 \) and \( y = 0 \) into the inequality:
[tex]\[ 0 > \frac{3}{4}(0) - 2 \implies 0 > -2 \][/tex]
Since this statement is true, \((0,0)\) is indeed a solution.
5. The graph intercepts the y-axis at \((0,-2)\).
- This statement is true. The y-axis intercept occurs where \( x = 0 \). Substituting \( x = 0 \) into the equation \( y = \frac{3}{4} x - 2 \) yields:
[tex]\[ y = \frac{3}{4}(0) - 2 = -2 \][/tex]
Therefore, the y-intercept is at \((0, -2)\).
Based on this analysis, the three correct options are:
- The graph of \( y > \frac{3}{4}x - 2 \) is a dashed line.
- One solution to the inequality is \((0,0)\).
- The graph intercepts the y-axis at [tex]\((0,-2)\)[/tex].
1. The slope of the line is -2.
- This statement is false. The slope of the line is given by the coefficient of \( x \) in the inequality \( y = \frac{3}{4} x - 2 \). Therefore, the correct slope is \(\frac{3}{4}\), not -2.
2. The graph of \( y > \frac{3}{4} x - 2 \) is a dashed line.
- This statement is true. The inequality is a strict inequality (greater than) which means the line itself is not included in the solution set. Thus, it is represented by a dashed line.
3. The area below the line is shaded.
- This statement is false. For the inequality \( y > \frac{3}{4} x - 2 \), the region above the line is shaded because the inequality is "greater than" \( \frac{3}{4} x - 2 \).
4. One solution to the inequality is \((0,0)\).
- This statement is true. To check if \((0,0)\) is a solution, substitute \( x = 0 \) and \( y = 0 \) into the inequality:
[tex]\[ 0 > \frac{3}{4}(0) - 2 \implies 0 > -2 \][/tex]
Since this statement is true, \((0,0)\) is indeed a solution.
5. The graph intercepts the y-axis at \((0,-2)\).
- This statement is true. The y-axis intercept occurs where \( x = 0 \). Substituting \( x = 0 \) into the equation \( y = \frac{3}{4} x - 2 \) yields:
[tex]\[ y = \frac{3}{4}(0) - 2 = -2 \][/tex]
Therefore, the y-intercept is at \((0, -2)\).
Based on this analysis, the three correct options are:
- The graph of \( y > \frac{3}{4}x - 2 \) is a dashed line.
- One solution to the inequality is \((0,0)\).
- The graph intercepts the y-axis at [tex]\((0,-2)\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.