Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Which statements are true about the linear inequality [tex]$y\ \textgreater \ \frac{3}{4} x-2$[/tex]? Select three options:

A. The slope of the line is -2.
B. The graph of [tex]$y\ \textgreater \ \frac{3}{4} x-2$[/tex] is a dashed line.
C. The area below the line is shaded.
D. One solution to the inequality is (0, 0).
E. The graph intercepts the y-axis at (0, -2).


Sagot :

To determine which statements are true about the linear inequality \( y > \frac{3}{4} x - 2 \), let's analyze it step-by-step:

1. The slope of the line is -2.
- This statement is false. The slope of the line is given by the coefficient of \( x \) in the inequality \( y = \frac{3}{4} x - 2 \). Therefore, the correct slope is \(\frac{3}{4}\), not -2.

2. The graph of \( y > \frac{3}{4} x - 2 \) is a dashed line.
- This statement is true. The inequality is a strict inequality (greater than) which means the line itself is not included in the solution set. Thus, it is represented by a dashed line.

3. The area below the line is shaded.
- This statement is false. For the inequality \( y > \frac{3}{4} x - 2 \), the region above the line is shaded because the inequality is "greater than" \( \frac{3}{4} x - 2 \).

4. One solution to the inequality is \((0,0)\).
- This statement is true. To check if \((0,0)\) is a solution, substitute \( x = 0 \) and \( y = 0 \) into the inequality:
[tex]\[ 0 > \frac{3}{4}(0) - 2 \implies 0 > -2 \][/tex]
Since this statement is true, \((0,0)\) is indeed a solution.

5. The graph intercepts the y-axis at \((0,-2)\).
- This statement is true. The y-axis intercept occurs where \( x = 0 \). Substituting \( x = 0 \) into the equation \( y = \frac{3}{4} x - 2 \) yields:
[tex]\[ y = \frac{3}{4}(0) - 2 = -2 \][/tex]
Therefore, the y-intercept is at \((0, -2)\).

Based on this analysis, the three correct options are:

- The graph of \( y > \frac{3}{4}x - 2 \) is a dashed line.
- One solution to the inequality is \((0,0)\).
- The graph intercepts the y-axis at [tex]\((0,-2)\)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.