Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

The value of [tex]\sqrt[3]{x^{10}}[/tex], when [tex]x=-2[/tex], can be written in simplest form as [tex]a \sqrt[3]{b}[/tex], where

[tex]\[ a = \boxed{\phantom{0}} \][/tex]
[tex]\[ b = \boxed{\phantom{0}} \][/tex]


Sagot :

To determine the simplest form of \(\sqrt[3]{x^{10}}\) when \(x = -2\), let's work through the problem step by step:

1. Start with the given value of \(x\):
[tex]\[ x = -2 \][/tex]

2. Calculate \(x^{10}\):
[tex]\[ x^{10} = (-2)^{10} \][/tex]
When a negative number is raised to an even power, the result is positive. Therefore:
[tex]\[ (-2)^{10} = 1024 \][/tex]

3. Find the cube root of \(x^{10}\):
[tex]\[ \sqrt[3]{(-2)^{10}} = \sqrt[3]{1024} \][/tex]

4. Express \(\sqrt[3]{1024}\) in the form \(a \sqrt[3]{b}\):
We need to find an \(a\) and a \(b\) such that:
[tex]\[ \sqrt[3]{1024} = a \sqrt[3]{b} \][/tex]
Notice that 1024 is a perfect power of 2:
[tex]\[ 1024 = 2^{10} \][/tex]
Now take the cube root of \(2^{10}\):
[tex]\[ \sqrt[3]{1024} = \sqrt[3]{2^{10}} = 2^{10/3} \][/tex]

To express this as \(a \sqrt[3]{b}\), decompose \(2^{10/3}\):
[tex]\[ 2^{10/3} = 2^{3 + 1/3} = 2^3 \cdot 2^{1/3} \][/tex]
Simplify this:
[tex]\[ 2^3 \cdot 2^{1/3} = 8 \cdot \sqrt[3]{2} \][/tex]

5. Identify \(a\) and \(b\):
By comparing the simplified expression with the form \(a \sqrt[3]{b}\), we see that:
[tex]\[ a = 8 \quad \text{and} \quad b = 2 \][/tex]

Therefore, \(\sqrt[3]{x^{10}}\) when \(x = -2\) can be written in simplest form as:
[tex]\[ 8 \sqrt[3]{2} \][/tex]
So, the values of \(a\) and \(b\) are:
[tex]\[ a = 8 \quad \text{and} \quad b = 2 \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.