Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure, let's solve the problem step by step.
Given the matrix
[tex]\[ A = \begin{pmatrix} 2 & 3 - 3i \\ 3 + 3i & 5 \end{pmatrix} \][/tex]
We want to find a unitary matrix \( P \) and a diagonal matrix \( D \) such that \( P^{+} A P = D \), where \( P^{+} \) is the conjugate transpose of \( P \).
### Step 1: Finding the Eigenvalues
The eigenvalues of \( A \) are the roots of the characteristic polynomial \( \det(A - \lambda I) = 0 \).
The given eigenvalues for matrix \( A \) are:
[tex]\[ \lambda_1 = -1 - 3.57375398 \times 10^{-16}i \][/tex]
[tex]\[ \lambda_2 = 8 - 8.67138121 \times 10^{-17}i \][/tex]
### Step 2: Finding the Eigenvectors
Next, we find the eigenvectors corresponding to these eigenvalues. The eigenvectors form the columns of the unitary matrix \( P \).
The given eigenvectors are:
[tex]\[ v_1 = \begin{pmatrix} 0.81649658 \\ -0.40824829 - 0.40824829i \end{pmatrix} \][/tex]
[tex]\[ v_2 = \begin{pmatrix} 0.40824829 - 0.40824829i \\ 0.81649658 \end{pmatrix} \][/tex]
### Step 3: Forming the Unitary Matrix \( P \)
The matrix \( P \) is constructed with these eigenvectors as its columns:
[tex]\[ P = \begin{pmatrix} 0.81649658 & 0.40824829 - 0.40824829i \\ -0.40824829 - 0.40824829i & 0.81649658 \end{pmatrix} \][/tex]
### Step 4: Forming the Diagonal Matrix \( D \)
The diagonal matrix \( D \) will have the eigenvalues on its diagonal:
[tex]\[ D = \begin{pmatrix} -1 - 3.57375398 \times 10^{-16}i & 0 \\ 0 & 8 - 8.67138121 \times 10^{-17}i \end{pmatrix} \][/tex]
### Verification
We check the relation \( P^{+} A P = D \), but since the numbers from the result match the required conditions, this step serves more as a confirmation. The entries in \( P \) should form a unitary matrix, meaning \( P^{+}P = I \), and proper multiplication with \( A \) yields \( D \).
### Final Answer
The unitary matrix \( P \) and diagonal matrix \( D \) such that \( P^{+} A P = D \) are:
[tex]\[ P = \begin{pmatrix} 0.81649658 & 0.40824829 - 0.40824829i \\ -0.40824829 - 0.40824829i & 0.81649658 \end{pmatrix} \][/tex]
[tex]\[ D = \begin{pmatrix} -1 - 3.57375398 \times 10^{-16}i & 0 \\ 0 & 8 - 8.67138121 \times 10^{-17}i \end{pmatrix} \][/tex]
Given the matrix
[tex]\[ A = \begin{pmatrix} 2 & 3 - 3i \\ 3 + 3i & 5 \end{pmatrix} \][/tex]
We want to find a unitary matrix \( P \) and a diagonal matrix \( D \) such that \( P^{+} A P = D \), where \( P^{+} \) is the conjugate transpose of \( P \).
### Step 1: Finding the Eigenvalues
The eigenvalues of \( A \) are the roots of the characteristic polynomial \( \det(A - \lambda I) = 0 \).
The given eigenvalues for matrix \( A \) are:
[tex]\[ \lambda_1 = -1 - 3.57375398 \times 10^{-16}i \][/tex]
[tex]\[ \lambda_2 = 8 - 8.67138121 \times 10^{-17}i \][/tex]
### Step 2: Finding the Eigenvectors
Next, we find the eigenvectors corresponding to these eigenvalues. The eigenvectors form the columns of the unitary matrix \( P \).
The given eigenvectors are:
[tex]\[ v_1 = \begin{pmatrix} 0.81649658 \\ -0.40824829 - 0.40824829i \end{pmatrix} \][/tex]
[tex]\[ v_2 = \begin{pmatrix} 0.40824829 - 0.40824829i \\ 0.81649658 \end{pmatrix} \][/tex]
### Step 3: Forming the Unitary Matrix \( P \)
The matrix \( P \) is constructed with these eigenvectors as its columns:
[tex]\[ P = \begin{pmatrix} 0.81649658 & 0.40824829 - 0.40824829i \\ -0.40824829 - 0.40824829i & 0.81649658 \end{pmatrix} \][/tex]
### Step 4: Forming the Diagonal Matrix \( D \)
The diagonal matrix \( D \) will have the eigenvalues on its diagonal:
[tex]\[ D = \begin{pmatrix} -1 - 3.57375398 \times 10^{-16}i & 0 \\ 0 & 8 - 8.67138121 \times 10^{-17}i \end{pmatrix} \][/tex]
### Verification
We check the relation \( P^{+} A P = D \), but since the numbers from the result match the required conditions, this step serves more as a confirmation. The entries in \( P \) should form a unitary matrix, meaning \( P^{+}P = I \), and proper multiplication with \( A \) yields \( D \).
### Final Answer
The unitary matrix \( P \) and diagonal matrix \( D \) such that \( P^{+} A P = D \) are:
[tex]\[ P = \begin{pmatrix} 0.81649658 & 0.40824829 - 0.40824829i \\ -0.40824829 - 0.40824829i & 0.81649658 \end{pmatrix} \][/tex]
[tex]\[ D = \begin{pmatrix} -1 - 3.57375398 \times 10^{-16}i & 0 \\ 0 & 8 - 8.67138121 \times 10^{-17}i \end{pmatrix} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.