Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's break this down step-by-step to find the correct inequality and the minimum number of hours Julian needs to practice each remaining day:
1. Understand the given data:
- Julian has already practiced \(5 \frac{1}{3}\) hours this week.
- He wants to practice at least 7 hours in total for the week.
- He has 2 days left to reach his minimum practice goal.
2. Convert mixed number to improper fraction:
[tex]\[ 5 \frac{1}{3} = 5 + \frac{1}{3} = \frac{15}{3} + \frac{1}{3} = \frac{16}{3} \][/tex]
3. Calculate the remaining practice hours needed:
[tex]\[ \text{Minimum total hours needed} - \text{Hours already practiced} = 7 - 5 \frac{1}{3} \][/tex]
[tex]\[ 7 - \frac{16}{3} = \frac{21}{3} - \frac{16}{3} = \frac{5}{3} \approx 1.67 \text{ hours} \][/tex]
4. Set up the inequality for the remaining 2 days:
Let \(x\) be the number of hours Julian needs to practice each of the next two days. Therefore, the total practice time for those 2 days is \(2x\).
The inequality representing the total practice time is:
[tex]\[ 5 \frac{1}{3} + 2x \geq 7 \][/tex]
Let's rewrite it using the improper fraction:
[tex]\[ \frac{16}{3} + 2x \geq 7 \][/tex]
5. Solve the inequality:
[tex]\[ \frac{16}{3} + 2x \geq 7 \][/tex]
First, multiply both sides by 3 to clear the fraction:
[tex]\[ 16 + 6x \geq 21 \][/tex]
Subtract 16 from both sides:
[tex]\[ 6x \geq 5 \][/tex]
Divide by 6:
[tex]\[ x \geq \frac{5}{6} \approx 0.83 \text{ hours} \][/tex]
So, Julian needs to practice at least \(\boxed{0.83}\) hours each of the next 2 days to meet his 7-hour weekly goal.
Therefore, the correct inequality from the given options is:
[tex]\[ 5 \frac{1}{3} + 2x \geq 7 \][/tex]
1. Understand the given data:
- Julian has already practiced \(5 \frac{1}{3}\) hours this week.
- He wants to practice at least 7 hours in total for the week.
- He has 2 days left to reach his minimum practice goal.
2. Convert mixed number to improper fraction:
[tex]\[ 5 \frac{1}{3} = 5 + \frac{1}{3} = \frac{15}{3} + \frac{1}{3} = \frac{16}{3} \][/tex]
3. Calculate the remaining practice hours needed:
[tex]\[ \text{Minimum total hours needed} - \text{Hours already practiced} = 7 - 5 \frac{1}{3} \][/tex]
[tex]\[ 7 - \frac{16}{3} = \frac{21}{3} - \frac{16}{3} = \frac{5}{3} \approx 1.67 \text{ hours} \][/tex]
4. Set up the inequality for the remaining 2 days:
Let \(x\) be the number of hours Julian needs to practice each of the next two days. Therefore, the total practice time for those 2 days is \(2x\).
The inequality representing the total practice time is:
[tex]\[ 5 \frac{1}{3} + 2x \geq 7 \][/tex]
Let's rewrite it using the improper fraction:
[tex]\[ \frac{16}{3} + 2x \geq 7 \][/tex]
5. Solve the inequality:
[tex]\[ \frac{16}{3} + 2x \geq 7 \][/tex]
First, multiply both sides by 3 to clear the fraction:
[tex]\[ 16 + 6x \geq 21 \][/tex]
Subtract 16 from both sides:
[tex]\[ 6x \geq 5 \][/tex]
Divide by 6:
[tex]\[ x \geq \frac{5}{6} \approx 0.83 \text{ hours} \][/tex]
So, Julian needs to practice at least \(\boxed{0.83}\) hours each of the next 2 days to meet his 7-hour weekly goal.
Therefore, the correct inequality from the given options is:
[tex]\[ 5 \frac{1}{3} + 2x \geq 7 \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.