Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the equation \((x+2)^2 + 12(x+2) - 14 = 0\) using \(u\) substitution and the quadratic formula, let's follow these steps:
1. Substitution:
Introduce a substitution \( u = x + 2 \). This simplifies the equation because it reduces the complexity. Substitute \( u \) into the equation:
[tex]\[ (x+2)^2 + 12(x+2) - 14 = 0 \][/tex]
becomes:
[tex]\[ u^2 + 12u - 14 = 0 \][/tex]
2. Quadratic Formula:
The quadratic formula states that for any quadratic equation of the form \( au^2 + bu + c = 0 \), the solutions can be found using:
[tex]\[ u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, \( a = 1 \), \( b = 12 \), and \( c = -14 \). Substitute these values into the quadratic formula to find \( u \):
[tex]\[ u = \frac{-12 \pm \sqrt{12^2 - 4 \cdot 1 \cdot (-14)}}{2 \cdot 1} \][/tex]
Calculate the discriminant:
[tex]\[ \Delta = b^2 - 4ac = 12^2 - 4 \cdot 1 \cdot (-14) = 144 + 56 = 200 \][/tex]
Now, solve for \( u \):
[tex]\[ u = \frac{-12 \pm \sqrt{200}}{2} \][/tex]
Since \(\sqrt{200} = 10\sqrt{2}\),
[tex]\[ u = \frac{-12 \pm 10\sqrt{2}}{2} = -6 \pm 5\sqrt{2} \][/tex]
Thus, the solutions for \( u \) are:
[tex]\[ u_1 = -6 + 5\sqrt{2}, \quad u_2 = -6 - 5\sqrt{2} \][/tex]
3. Back Substitution:
Recall that \( u = x + 2 \). We need to solve for \( x \):
[tex]\[ u_1 = x + 2 \implies x_1 = u_1 - 2 \][/tex]
[tex]\[ u_2 = x + 2 \implies x_2 = u_2 - 2 \][/tex]
Substitute the values of \( u_1 \) and \( u_2 \) back:
[tex]\[ x_1 = -6 + 5\sqrt{2} - 2 = -8 + 5\sqrt{2} \][/tex]
[tex]\[ x_2 = -6 - 5\sqrt{2} - 2 = -8 - 5\sqrt{2} \][/tex]
Therefore, the solutions are:
[tex]\[ x = -8 \pm 5\sqrt{2} \][/tex]
Hence, after all the steps, the solutions to the equation \((x+2)^2 + 12(x+2) - 14 = 0\) are:
[tex]\[ x = -8 \pm 5\sqrt{2} \][/tex]
So, the correct answer is:
[tex]\[ x = -8 \pm 5\sqrt{2} \][/tex]
1. Substitution:
Introduce a substitution \( u = x + 2 \). This simplifies the equation because it reduces the complexity. Substitute \( u \) into the equation:
[tex]\[ (x+2)^2 + 12(x+2) - 14 = 0 \][/tex]
becomes:
[tex]\[ u^2 + 12u - 14 = 0 \][/tex]
2. Quadratic Formula:
The quadratic formula states that for any quadratic equation of the form \( au^2 + bu + c = 0 \), the solutions can be found using:
[tex]\[ u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, \( a = 1 \), \( b = 12 \), and \( c = -14 \). Substitute these values into the quadratic formula to find \( u \):
[tex]\[ u = \frac{-12 \pm \sqrt{12^2 - 4 \cdot 1 \cdot (-14)}}{2 \cdot 1} \][/tex]
Calculate the discriminant:
[tex]\[ \Delta = b^2 - 4ac = 12^2 - 4 \cdot 1 \cdot (-14) = 144 + 56 = 200 \][/tex]
Now, solve for \( u \):
[tex]\[ u = \frac{-12 \pm \sqrt{200}}{2} \][/tex]
Since \(\sqrt{200} = 10\sqrt{2}\),
[tex]\[ u = \frac{-12 \pm 10\sqrt{2}}{2} = -6 \pm 5\sqrt{2} \][/tex]
Thus, the solutions for \( u \) are:
[tex]\[ u_1 = -6 + 5\sqrt{2}, \quad u_2 = -6 - 5\sqrt{2} \][/tex]
3. Back Substitution:
Recall that \( u = x + 2 \). We need to solve for \( x \):
[tex]\[ u_1 = x + 2 \implies x_1 = u_1 - 2 \][/tex]
[tex]\[ u_2 = x + 2 \implies x_2 = u_2 - 2 \][/tex]
Substitute the values of \( u_1 \) and \( u_2 \) back:
[tex]\[ x_1 = -6 + 5\sqrt{2} - 2 = -8 + 5\sqrt{2} \][/tex]
[tex]\[ x_2 = -6 - 5\sqrt{2} - 2 = -8 - 5\sqrt{2} \][/tex]
Therefore, the solutions are:
[tex]\[ x = -8 \pm 5\sqrt{2} \][/tex]
Hence, after all the steps, the solutions to the equation \((x+2)^2 + 12(x+2) - 14 = 0\) are:
[tex]\[ x = -8 \pm 5\sqrt{2} \][/tex]
So, the correct answer is:
[tex]\[ x = -8 \pm 5\sqrt{2} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.