At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which ordered pairs are in the solution set of the system of linear inequalities:
[tex]\[ \begin{array}{l} y \geq -\frac{1}{2} x \\ y < \frac{1}{2} x + 1 \end{array} \][/tex]
we need to verify each pair to see if it satisfies both inequalities.
Let's check each ordered pair:
1. Pair (5, -2):
- First inequality: \( -2 \geq -\frac{1}{2} \cdot 5 \Rightarrow -2 \geq -2.5 \) (True)
- Second inequality: \( -2 < \frac{1}{2} \cdot 5 + 1 \Rightarrow -2 < 3.5 \) (True)
- Both conditions are satisfied, so (5, -2) is in the solution set.
2. Pair (3, 1):
- First inequality: \( 1 \geq -\frac{1}{2} \cdot 3 \Rightarrow 1 \geq -1.5 \) (True)
- Second inequality: \( 1 < \frac{1}{2} \cdot 3 + 1 \Rightarrow 1 < 2.5 \) (True)
- Both conditions are satisfied, so (3, 1) is in the solution set.
3. Pair (-4, 2):
- First inequality: \( 2 \geq -\frac{1}{2} \cdot (-4) \Rightarrow 2 \geq 2 \) (True)
- Second inequality: \( 2 < \frac{1}{2} \cdot (-4) + 1 \Rightarrow 2 < -1 + 1 \Rightarrow 2 < 0 \) (False)
- The second condition is not satisfied, so (-4, 2) is not in the solution set.
4. Pair (3, -1):
- First inequality: \( -1 \geq -\frac{1}{2} \cdot 3 \Rightarrow -1 \geq -1.5 \) (True)
- Second inequality: \( -1 < \frac{1}{2} \cdot 3 + 1 \Rightarrow -1 < 2.5 \) (True)
- Both conditions are satisfied, so (3, -1) is in the solution set.
5. Pair (4, -3):
- First inequality: \( -3 \geq -\frac{1}{2} \cdot 4 \Rightarrow -3 \geq -2 \) (False)
- Second inequality: \( -3 < \frac{1}{2} \cdot 4 + 1 \Rightarrow -3 < 3 \) (True)
- The first condition is not satisfied, so (4, -3) is not in the solution set.
6. Pair (4, 2):
- First inequality: \( 2 \geq -\frac{1}{2} \cdot 4 \Rightarrow 2 \geq -2 \) (True)
- Second inequality: \( 2 < \frac{1}{2} \cdot 4 + 1 \Rightarrow 2 < 3 \) (True)
- Both conditions are satisfied, so (4, 2) is in the solution set.
7. Pair (-3, 1):
- First inequality: \( 1 \geq -\frac{1}{2} \cdot (-3) \Rightarrow 1 \geq 1.5 \) (False)
- Second inequality: \( 1 < \frac{1}{2} \cdot (-3) + 1 \Rightarrow 1 < -1.5 + 1 \Rightarrow 1 < -0.5 \) (False)
- Both conditions are not satisfied, so (-3, 1) is not in the solution set.
Based on the above, the ordered pairs that are in the solution set are:
- (5, -2)
- (3, 1)
- (3, -1)
- (4, 2)
Therefore, the ordered pairs in the solution set are:
- (5, -2), (3, 1), (3, -1), (4, 2).
[tex]\[ \begin{array}{l} y \geq -\frac{1}{2} x \\ y < \frac{1}{2} x + 1 \end{array} \][/tex]
we need to verify each pair to see if it satisfies both inequalities.
Let's check each ordered pair:
1. Pair (5, -2):
- First inequality: \( -2 \geq -\frac{1}{2} \cdot 5 \Rightarrow -2 \geq -2.5 \) (True)
- Second inequality: \( -2 < \frac{1}{2} \cdot 5 + 1 \Rightarrow -2 < 3.5 \) (True)
- Both conditions are satisfied, so (5, -2) is in the solution set.
2. Pair (3, 1):
- First inequality: \( 1 \geq -\frac{1}{2} \cdot 3 \Rightarrow 1 \geq -1.5 \) (True)
- Second inequality: \( 1 < \frac{1}{2} \cdot 3 + 1 \Rightarrow 1 < 2.5 \) (True)
- Both conditions are satisfied, so (3, 1) is in the solution set.
3. Pair (-4, 2):
- First inequality: \( 2 \geq -\frac{1}{2} \cdot (-4) \Rightarrow 2 \geq 2 \) (True)
- Second inequality: \( 2 < \frac{1}{2} \cdot (-4) + 1 \Rightarrow 2 < -1 + 1 \Rightarrow 2 < 0 \) (False)
- The second condition is not satisfied, so (-4, 2) is not in the solution set.
4. Pair (3, -1):
- First inequality: \( -1 \geq -\frac{1}{2} \cdot 3 \Rightarrow -1 \geq -1.5 \) (True)
- Second inequality: \( -1 < \frac{1}{2} \cdot 3 + 1 \Rightarrow -1 < 2.5 \) (True)
- Both conditions are satisfied, so (3, -1) is in the solution set.
5. Pair (4, -3):
- First inequality: \( -3 \geq -\frac{1}{2} \cdot 4 \Rightarrow -3 \geq -2 \) (False)
- Second inequality: \( -3 < \frac{1}{2} \cdot 4 + 1 \Rightarrow -3 < 3 \) (True)
- The first condition is not satisfied, so (4, -3) is not in the solution set.
6. Pair (4, 2):
- First inequality: \( 2 \geq -\frac{1}{2} \cdot 4 \Rightarrow 2 \geq -2 \) (True)
- Second inequality: \( 2 < \frac{1}{2} \cdot 4 + 1 \Rightarrow 2 < 3 \) (True)
- Both conditions are satisfied, so (4, 2) is in the solution set.
7. Pair (-3, 1):
- First inequality: \( 1 \geq -\frac{1}{2} \cdot (-3) \Rightarrow 1 \geq 1.5 \) (False)
- Second inequality: \( 1 < \frac{1}{2} \cdot (-3) + 1 \Rightarrow 1 < -1.5 + 1 \Rightarrow 1 < -0.5 \) (False)
- Both conditions are not satisfied, so (-3, 1) is not in the solution set.
Based on the above, the ordered pairs that are in the solution set are:
- (5, -2)
- (3, 1)
- (3, -1)
- (4, 2)
Therefore, the ordered pairs in the solution set are:
- (5, -2), (3, 1), (3, -1), (4, 2).
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.