Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the function that represents a reflection of \(f(x) = \frac{3}{8}(4^x)\) across the \(y\)-axis, we need to understand what this transformation entails. Reflecting a function \(f(x)\) across the \(y\)-axis involves replacing \(x\) with \(-x\).
Step-by-step:
1. Original Function:
[tex]\[ f(x) = \frac{3}{8}(4^x) \][/tex]
2. Reflection Across the \(y\)-Axis:
To reflect this function across the \(y\)-axis, we replace \(x\) with \(-x\):
[tex]\[ f(-x) = \frac{3}{8}(4^{-x}) \][/tex]
3. Simplifying the Expression:
The expression \(4^{-x}\) can be directly incorporated since it represents the negative exponent transformation.
So, the function representing the reflection is:
[tex]\[ g(x) = \frac{3}{8}(4^{-x}) \][/tex]
Comparing this result with the given options:
1. \( g(x) = -\frac{3}{8}\left(\frac{1}{4}\right)^x \)
2. \( g(x) = -\frac{3}{8}(4)^x \)
3. \( g(x) = \frac{8}{3}(4)^{-x} \)
4. \( g(x) = \frac{3}{8}(4)^{-x} \)
The correct match is:
[tex]\[ g(x) = \frac{3}{8}(4)^{-x} \][/tex]
Therefore, the function that represents the reflection of [tex]\(f(x)\)[/tex] across the [tex]\(y\)[/tex]-axis is given by option 4.
Step-by-step:
1. Original Function:
[tex]\[ f(x) = \frac{3}{8}(4^x) \][/tex]
2. Reflection Across the \(y\)-Axis:
To reflect this function across the \(y\)-axis, we replace \(x\) with \(-x\):
[tex]\[ f(-x) = \frac{3}{8}(4^{-x}) \][/tex]
3. Simplifying the Expression:
The expression \(4^{-x}\) can be directly incorporated since it represents the negative exponent transformation.
So, the function representing the reflection is:
[tex]\[ g(x) = \frac{3}{8}(4^{-x}) \][/tex]
Comparing this result with the given options:
1. \( g(x) = -\frac{3}{8}\left(\frac{1}{4}\right)^x \)
2. \( g(x) = -\frac{3}{8}(4)^x \)
3. \( g(x) = \frac{8}{3}(4)^{-x} \)
4. \( g(x) = \frac{3}{8}(4)^{-x} \)
The correct match is:
[tex]\[ g(x) = \frac{3}{8}(4)^{-x} \][/tex]
Therefore, the function that represents the reflection of [tex]\(f(x)\)[/tex] across the [tex]\(y\)[/tex]-axis is given by option 4.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.