Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the equation \(1 + 2 e^{x+1} = 9\) for \(x\), let's work through it step by step.
1. Start with the original equation:
[tex]\[ 1 + 2 e^{x+1} = 9 \][/tex]
2. Isolate the exponential term:
[tex]\[ 2 e^{x+1} = 9 - 1 \][/tex]
Simplify the right-hand side:
[tex]\[ 2 e^{x+1} = 8 \][/tex]
3. Divide both sides by 2 to solve for \(e^{x+1}\):
[tex]\[ e^{x+1} = \frac{8}{2} \][/tex]
Simplify the fraction:
[tex]\[ e^{x+1} = 4 \][/tex]
4. Take the natural logarithm (ln) on both sides to solve for \(x+1\):
[tex]\[ \ln(e^{x+1}) = \ln(4) \][/tex]
5. Use the property of logarithms \(\ln(e^y) = y\):
[tex]\[ x + 1 = \ln(4) \][/tex]
6. Solve for \(x\) by subtracting 1 from both sides:
[tex]\[ x = \ln(4) - 1 \][/tex]
Given the choices:
- \(x = \log 4 - 1\)
- \(x = \log 4\)
- \(x = \ln 4 - 1\)
- \(x = \ln 4\)
The value that matches is:
[tex]\[ x = \ln 4 - 1 \][/tex]
Using the numerical result, we can confirm that this is approximately:
[tex]\[ x = 0.3862943611198906 \][/tex]
Therefore, the correct option is:
[tex]\[ x = \ln 4 - 1 \][/tex]
1. Start with the original equation:
[tex]\[ 1 + 2 e^{x+1} = 9 \][/tex]
2. Isolate the exponential term:
[tex]\[ 2 e^{x+1} = 9 - 1 \][/tex]
Simplify the right-hand side:
[tex]\[ 2 e^{x+1} = 8 \][/tex]
3. Divide both sides by 2 to solve for \(e^{x+1}\):
[tex]\[ e^{x+1} = \frac{8}{2} \][/tex]
Simplify the fraction:
[tex]\[ e^{x+1} = 4 \][/tex]
4. Take the natural logarithm (ln) on both sides to solve for \(x+1\):
[tex]\[ \ln(e^{x+1}) = \ln(4) \][/tex]
5. Use the property of logarithms \(\ln(e^y) = y\):
[tex]\[ x + 1 = \ln(4) \][/tex]
6. Solve for \(x\) by subtracting 1 from both sides:
[tex]\[ x = \ln(4) - 1 \][/tex]
Given the choices:
- \(x = \log 4 - 1\)
- \(x = \log 4\)
- \(x = \ln 4 - 1\)
- \(x = \ln 4\)
The value that matches is:
[tex]\[ x = \ln 4 - 1 \][/tex]
Using the numerical result, we can confirm that this is approximately:
[tex]\[ x = 0.3862943611198906 \][/tex]
Therefore, the correct option is:
[tex]\[ x = \ln 4 - 1 \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.