Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Which ordered pair makes both inequalities true?

[tex]\[
\begin{array}{l}
y \ \textgreater \ -2x + 3 \\
y \leq x - 2
\end{array}
\][/tex]

A. \((0, 0)\)
B. \((0, -1)\)
C. \((1, 1)\)
D. [tex]\((3, 0)\)[/tex]


Sagot :

To determine which ordered pair satisfies both inequalities
[tex]\[ y > -2x + 3 \][/tex]
[tex]\[ y \leq x - 2 \][/tex]
we need to check each given ordered pair step-by-step.

Let's analyze each pair:

1. Pair (0, 0):
[tex]\[ y = 0, x = 0 \][/tex]
Check the first inequality \( y > -2x + 3 \):
[tex]\[ 0 > -2(0) + 3 \implies 0 > 3 \quad \text{(False)} \][/tex]
Since this pair does not satisfy the first inequality, we can move on to the next pair.

2. Pair (0, -1):
[tex]\[ y = -1, x = 0 \][/tex]
Check the first inequality \( y > -2x + 3 \):
[tex]\[ -1 > -2(0) + 3 \implies -1 > 3 \quad \text{(False)} \][/tex]
Since this pair does not satisfy the first inequality, we can move on to the next pair.

3. Pair (1, 1):
[tex]\[ y = 1, x = 1 \][/tex]
Check the first inequality \( y > -2x + 3 \):
[tex]\[ 1 > -2(1) + 3 \implies 1 > 1 \quad \text{(False)} \][/tex]
Since this pair does not satisfy the first inequality, we can move on to the next pair.

4. Pair (3, 0):
[tex]\[ y = 0, x = 3 \][/tex]
Check the first inequality \( y > -2x + 3 \):
[tex]\[ 0 > -2(3) + 3 \implies 0 > -6 + 3 \implies 0 > -3 \quad \text{(True)} \][/tex]
Now, check the second inequality \( y \leq x - 2 \):
[tex]\[ 0 \leq 3 - 2 \implies 0 \leq 1 \quad \text{(True)} \][/tex]
This pair satisfies both inequalities.

Therefore, the ordered pair that makes both inequalities true is:
[tex]\[ (3, 0) \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.