Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which ordered pair satisfies both inequalities
[tex]\[ y > -2x + 3 \][/tex]
[tex]\[ y \leq x - 2 \][/tex]
we need to check each given ordered pair step-by-step.
Let's analyze each pair:
1. Pair (0, 0):
[tex]\[ y = 0, x = 0 \][/tex]
Check the first inequality \( y > -2x + 3 \):
[tex]\[ 0 > -2(0) + 3 \implies 0 > 3 \quad \text{(False)} \][/tex]
Since this pair does not satisfy the first inequality, we can move on to the next pair.
2. Pair (0, -1):
[tex]\[ y = -1, x = 0 \][/tex]
Check the first inequality \( y > -2x + 3 \):
[tex]\[ -1 > -2(0) + 3 \implies -1 > 3 \quad \text{(False)} \][/tex]
Since this pair does not satisfy the first inequality, we can move on to the next pair.
3. Pair (1, 1):
[tex]\[ y = 1, x = 1 \][/tex]
Check the first inequality \( y > -2x + 3 \):
[tex]\[ 1 > -2(1) + 3 \implies 1 > 1 \quad \text{(False)} \][/tex]
Since this pair does not satisfy the first inequality, we can move on to the next pair.
4. Pair (3, 0):
[tex]\[ y = 0, x = 3 \][/tex]
Check the first inequality \( y > -2x + 3 \):
[tex]\[ 0 > -2(3) + 3 \implies 0 > -6 + 3 \implies 0 > -3 \quad \text{(True)} \][/tex]
Now, check the second inequality \( y \leq x - 2 \):
[tex]\[ 0 \leq 3 - 2 \implies 0 \leq 1 \quad \text{(True)} \][/tex]
This pair satisfies both inequalities.
Therefore, the ordered pair that makes both inequalities true is:
[tex]\[ (3, 0) \][/tex]
[tex]\[ y > -2x + 3 \][/tex]
[tex]\[ y \leq x - 2 \][/tex]
we need to check each given ordered pair step-by-step.
Let's analyze each pair:
1. Pair (0, 0):
[tex]\[ y = 0, x = 0 \][/tex]
Check the first inequality \( y > -2x + 3 \):
[tex]\[ 0 > -2(0) + 3 \implies 0 > 3 \quad \text{(False)} \][/tex]
Since this pair does not satisfy the first inequality, we can move on to the next pair.
2. Pair (0, -1):
[tex]\[ y = -1, x = 0 \][/tex]
Check the first inequality \( y > -2x + 3 \):
[tex]\[ -1 > -2(0) + 3 \implies -1 > 3 \quad \text{(False)} \][/tex]
Since this pair does not satisfy the first inequality, we can move on to the next pair.
3. Pair (1, 1):
[tex]\[ y = 1, x = 1 \][/tex]
Check the first inequality \( y > -2x + 3 \):
[tex]\[ 1 > -2(1) + 3 \implies 1 > 1 \quad \text{(False)} \][/tex]
Since this pair does not satisfy the first inequality, we can move on to the next pair.
4. Pair (3, 0):
[tex]\[ y = 0, x = 3 \][/tex]
Check the first inequality \( y > -2x + 3 \):
[tex]\[ 0 > -2(3) + 3 \implies 0 > -6 + 3 \implies 0 > -3 \quad \text{(True)} \][/tex]
Now, check the second inequality \( y \leq x - 2 \):
[tex]\[ 0 \leq 3 - 2 \implies 0 \leq 1 \quad \text{(True)} \][/tex]
This pair satisfies both inequalities.
Therefore, the ordered pair that makes both inequalities true is:
[tex]\[ (3, 0) \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.