At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's solve the problem of finding the set \( \{x : x \text{ is an integer and } x^2 < 40\} \).
We need to determine the integer values of \( x \) such that the square of \( x \) is less than 40.
1. Identify the range of \( x \) satisfying \( x^2 < 40 \):
- We want to find the integer values for which \( x^2 < 40 \).
- Start by estimating the maximum integer value for \( x \). Since \( x^2 < 40 \), \( x \) can be as large as the greatest integer less than \(\sqrt{40} \approx 6.32\). Thus, the largest integer \( x \) can be, while satisfying \( x^2 < 40 \), is 6.
- Remember to consider negative integers as well, because squaring negative numbers results in positive values. So the range must include negative integers.
2. Test integer values within the range \([-6, 6]\):
- The square of \(-6\) is \( (-6)^2 = 36 < 40 \).
- The square of \(-5\) is \( (-5)^2 = 25 < 40 \).
- The square of \(-4\) is \( (-4)^2 = 16 < 40 \).
- The square of \(-3\) is \( (-3)^2 = 9 < 40 \).
- The square of \(-2\) is \( (-2)^2 = 4 < 40 \).
- The square of \(-1\) is \( (-1)^2 = 1 < 40 \).
- The square of \( 0 \) is \( 0^2 = 0 < 40 \).
- The square of \( 1 \) is \( 1^2 = 1 < 40 \).
- The square of \( 2 \) is \( 2^2 = 4 < 40 \).
- The square of \( 3 \) is \( 3^2 = 9 < 40 \).
- The square of \( 4 \) is \( 4^2 = 16 < 40 \).
- The square of \( 5 \) is \( 5^2 = 25 < 40 \).
- The square of \( 6 \) is \( 6^2 = 36 < 40 \).
3. Conclusion:
- Hence, all integers \( x \) in the set \( \{ -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6 \} \) satisfy \( x^2 < 40 \).
Therefore, the set of integers \( x \) such that \( x^2 < 40 \) is:
[tex]\[ \{-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5\} \][/tex]
We need to determine the integer values of \( x \) such that the square of \( x \) is less than 40.
1. Identify the range of \( x \) satisfying \( x^2 < 40 \):
- We want to find the integer values for which \( x^2 < 40 \).
- Start by estimating the maximum integer value for \( x \). Since \( x^2 < 40 \), \( x \) can be as large as the greatest integer less than \(\sqrt{40} \approx 6.32\). Thus, the largest integer \( x \) can be, while satisfying \( x^2 < 40 \), is 6.
- Remember to consider negative integers as well, because squaring negative numbers results in positive values. So the range must include negative integers.
2. Test integer values within the range \([-6, 6]\):
- The square of \(-6\) is \( (-6)^2 = 36 < 40 \).
- The square of \(-5\) is \( (-5)^2 = 25 < 40 \).
- The square of \(-4\) is \( (-4)^2 = 16 < 40 \).
- The square of \(-3\) is \( (-3)^2 = 9 < 40 \).
- The square of \(-2\) is \( (-2)^2 = 4 < 40 \).
- The square of \(-1\) is \( (-1)^2 = 1 < 40 \).
- The square of \( 0 \) is \( 0^2 = 0 < 40 \).
- The square of \( 1 \) is \( 1^2 = 1 < 40 \).
- The square of \( 2 \) is \( 2^2 = 4 < 40 \).
- The square of \( 3 \) is \( 3^2 = 9 < 40 \).
- The square of \( 4 \) is \( 4^2 = 16 < 40 \).
- The square of \( 5 \) is \( 5^2 = 25 < 40 \).
- The square of \( 6 \) is \( 6^2 = 36 < 40 \).
3. Conclusion:
- Hence, all integers \( x \) in the set \( \{ -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6 \} \) satisfy \( x^2 < 40 \).
Therefore, the set of integers \( x \) such that \( x^2 < 40 \) is:
[tex]\[ \{-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5\} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.