Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure, let's analyze the problem step-by-step:
1. Understanding Displacement (D):
- Displacement is a vector quantity that refers to the shortest distance from the initial point to the final point in a specific direction.
- If a body starts from a certain point and returns to the same point, it means the final position coincides with the initial position.
- Therefore, the displacement \( D \) in this case is zero because the starting and ending points are the same.
2. Understanding Distance (S):
- Distance is a scalar quantity that measures the total path length covered by the body irrespective of its direction.
- Even though the body returns to its starting point, it must have traveled some path to get there and back.
- Thus, the distance \( S \) covered by the body is not zero because the body has actually moved, covered some distance, and returned to the original point.
Combining these points:
- Displacement \( D \) is zero.
- Distance \( S \) is not zero.
Thus, the correct option is:
(b) [tex]\( D \)[/tex] is zero but [tex]\( S \)[/tex] is not zero.
1. Understanding Displacement (D):
- Displacement is a vector quantity that refers to the shortest distance from the initial point to the final point in a specific direction.
- If a body starts from a certain point and returns to the same point, it means the final position coincides with the initial position.
- Therefore, the displacement \( D \) in this case is zero because the starting and ending points are the same.
2. Understanding Distance (S):
- Distance is a scalar quantity that measures the total path length covered by the body irrespective of its direction.
- Even though the body returns to its starting point, it must have traveled some path to get there and back.
- Thus, the distance \( S \) covered by the body is not zero because the body has actually moved, covered some distance, and returned to the original point.
Combining these points:
- Displacement \( D \) is zero.
- Distance \( S \) is not zero.
Thus, the correct option is:
(b) [tex]\( D \)[/tex] is zero but [tex]\( S \)[/tex] is not zero.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.