Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
The statement \( x(7 + 3) = x \times 7 + x \times 3 \) demonstrates a fundamental property in algebra known as the distributive property of multiplication over addition. To better understand this, let's break it down step by step:
1. Expression Interpretation:
- You start with an expression where a term \( x \) is to be multiplied by a sum, \( (7 + 3) \).
2. Application of the Distributive Property:
- The distributive property of multiplication over addition states that when a single term is multiplied by a sum of two or more terms, you can distribute the multiplication over each term in the sum separately.
- Mathematically, this can be written as:
[tex]\[ x(a + b) = x \times a + x \times b \][/tex]
3. Applying to the Given Expression:
- Here, \( x = 6 \), \( a = 7 \), and \( b = 3 \).
- According to the distributive property:
[tex]\[ 6(7 + 3) = 6 \times 7 + 6 \times 3 \][/tex]
4. Demonstration through Expansion:
- First, expand the expression inside the parentheses by multiplying \( 6 \) by each term in the sum:
[tex]\[ 6(7 + 3) = 6 \times 7 + 6 \times 3 \][/tex]
- Here, we multiplied \( 6 \) by \( 7 \) and \( 6 \) by \( 3 \) separately.
5. Conclusion:
- The rewritten form \( 6 \times 7 + 6 \times 3 \) confirms that the distributive property has been applied correctly.
- Hence, the given statement \( 6(7 + 3) = 6 \times 7 + 6 \times 3 \) indeed illustrates the distributive property of multiplication over addition.
In conclusion, the distributive property allows you to multiply each addend separately and then add the products. This property is a key tool in simplifying and solving algebraic expressions.
1. Expression Interpretation:
- You start with an expression where a term \( x \) is to be multiplied by a sum, \( (7 + 3) \).
2. Application of the Distributive Property:
- The distributive property of multiplication over addition states that when a single term is multiplied by a sum of two or more terms, you can distribute the multiplication over each term in the sum separately.
- Mathematically, this can be written as:
[tex]\[ x(a + b) = x \times a + x \times b \][/tex]
3. Applying to the Given Expression:
- Here, \( x = 6 \), \( a = 7 \), and \( b = 3 \).
- According to the distributive property:
[tex]\[ 6(7 + 3) = 6 \times 7 + 6 \times 3 \][/tex]
4. Demonstration through Expansion:
- First, expand the expression inside the parentheses by multiplying \( 6 \) by each term in the sum:
[tex]\[ 6(7 + 3) = 6 \times 7 + 6 \times 3 \][/tex]
- Here, we multiplied \( 6 \) by \( 7 \) and \( 6 \) by \( 3 \) separately.
5. Conclusion:
- The rewritten form \( 6 \times 7 + 6 \times 3 \) confirms that the distributive property has been applied correctly.
- Hence, the given statement \( 6(7 + 3) = 6 \times 7 + 6 \times 3 \) indeed illustrates the distributive property of multiplication over addition.
In conclusion, the distributive property allows you to multiply each addend separately and then add the products. This property is a key tool in simplifying and solving algebraic expressions.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.