Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure, let's solve these problems step by step using the remainder theorem.
Remainder Theorem: If a polynomial \( p(y) \) is divided by \( (y - c) \), the remainder is \( p(c) \).
### (i) \( p(y) = 4y^3 - 12y^2 + 5y - 4 \) and \( g(y) = 2y - 1 \)
To use the remainder theorem, we need to find the value of \( y \) that makes \( g(y) = 0 \). So we solve:
[tex]\[ 2y - 1 = 0 \][/tex]
[tex]\[ 2y = 1 \][/tex]
[tex]\[ y = \frac{1}{2} \][/tex]
Now, we substitute \( y = \frac{1}{2} \) into \( p(y) \):
[tex]\[ p\left(\frac{1}{2}\right) = 4\left(\frac{1}{2}\right)^3 - 12\left(\frac{1}{2}\right)^2 + 5\left(\frac{1}{2}\right) - 4 \][/tex]
[tex]\[ = 4\left(\frac{1}{8}\right) - 12\left(\frac{1}{4}\right) + 5\left(\frac{1}{2}\right) - 4 \][/tex]
[tex]\[ = \frac{4}{8} - \frac{12}{4} + \frac{5}{2} - 4 \][/tex]
[tex]\[ = \frac{1}{2} - 3 + \frac{5}{2} - 4 \][/tex]
[tex]\[ = \frac{1}{2} - 3 + 2.5 - 4 \][/tex]
[tex]\[ = \frac{1}{2} + 2.5 - 7 \][/tex]
[tex]\[ = \frac{1}{2} + 2.5 - 7 \][/tex]
[tex]\[ = \frac{1}{2} + 2.5 - 7 \][/tex]
[tex]\[ = \frac{1}{2} + 2.5 - 7 \][/tex]
[tex]\[ = 0.5 + 2.5 - 7 \][/tex]
[tex]\[ = 3 - 7 \][/tex]
[tex]\[ = -4 \][/tex]
So, the remainder when \( p(y) \) is divided by \( g(y) \) is \(-4\).
### (ii) \( p(y) = y^3 - 4y^2 - 2y + 6 \) and \( g(y) = 1 - \frac{3}{4} \)
First, simplify \( g(y) \):
[tex]\[ g(y) = 1 - \frac{3}{4} = \frac{4}{4} - \frac{3}{4} = \frac{1}{4} \][/tex]
We need to find the root of \( 1 - \frac{3}{4} = 0 \):
[tex]\[ 1 - \frac{3}{4} = 0 \][/tex]
[tex]\[ y = \frac{1}{4} \][/tex]
Now, we substitute \( y = \frac{1}{4} \) into \( p(y) \):
[tex]\[ p\left(\frac{1}{4}\right) = \left(\frac{1}{4}\right)^3 - 4\left(\frac{1}{4}\right)^2 - 2\left(\frac{1}{4}\right) + 6 \][/tex]
[tex]\[ = \frac{1}{64} - 4\left(\frac{1}{16}\right) - 2\left(\frac{1}{4}\right) + 6 \][/tex]
[tex]\[ = \frac{1}{64} - \frac{4}{16} - \frac{2}{4} + 6 \][/tex]
[tex]\[ = \frac{1}{64} - \frac{1}{4} - \frac{1}{2} + 6 \][/tex]
[tex]\[ = \frac{1}{64} - \frac{16}{64} - \frac{32}{64} + \frac{384}{64} \][/tex]
[tex]\[ = \frac{1 - 16 - 32 + 384}{64} \][/tex]
[tex]\[ = \frac{337}{64} \][/tex]
So, the remainder when \( p(y) \) is divided by \( g(y) \) is \( \frac{337}{64} \).
To summarize:
(i) The remainder when \( 4y^3 - 12y^2 + 5y - 4 \) is divided by \( 2y - 1 \) is \(-4\).
(ii) The remainder when [tex]\( y^3 - 4y^2 - 2y + 6 \)[/tex] is divided by [tex]\( 1 - \frac{3}{4} \)[/tex] is [tex]\( \frac{337}{64} \)[/tex].
Remainder Theorem: If a polynomial \( p(y) \) is divided by \( (y - c) \), the remainder is \( p(c) \).
### (i) \( p(y) = 4y^3 - 12y^2 + 5y - 4 \) and \( g(y) = 2y - 1 \)
To use the remainder theorem, we need to find the value of \( y \) that makes \( g(y) = 0 \). So we solve:
[tex]\[ 2y - 1 = 0 \][/tex]
[tex]\[ 2y = 1 \][/tex]
[tex]\[ y = \frac{1}{2} \][/tex]
Now, we substitute \( y = \frac{1}{2} \) into \( p(y) \):
[tex]\[ p\left(\frac{1}{2}\right) = 4\left(\frac{1}{2}\right)^3 - 12\left(\frac{1}{2}\right)^2 + 5\left(\frac{1}{2}\right) - 4 \][/tex]
[tex]\[ = 4\left(\frac{1}{8}\right) - 12\left(\frac{1}{4}\right) + 5\left(\frac{1}{2}\right) - 4 \][/tex]
[tex]\[ = \frac{4}{8} - \frac{12}{4} + \frac{5}{2} - 4 \][/tex]
[tex]\[ = \frac{1}{2} - 3 + \frac{5}{2} - 4 \][/tex]
[tex]\[ = \frac{1}{2} - 3 + 2.5 - 4 \][/tex]
[tex]\[ = \frac{1}{2} + 2.5 - 7 \][/tex]
[tex]\[ = \frac{1}{2} + 2.5 - 7 \][/tex]
[tex]\[ = \frac{1}{2} + 2.5 - 7 \][/tex]
[tex]\[ = \frac{1}{2} + 2.5 - 7 \][/tex]
[tex]\[ = 0.5 + 2.5 - 7 \][/tex]
[tex]\[ = 3 - 7 \][/tex]
[tex]\[ = -4 \][/tex]
So, the remainder when \( p(y) \) is divided by \( g(y) \) is \(-4\).
### (ii) \( p(y) = y^3 - 4y^2 - 2y + 6 \) and \( g(y) = 1 - \frac{3}{4} \)
First, simplify \( g(y) \):
[tex]\[ g(y) = 1 - \frac{3}{4} = \frac{4}{4} - \frac{3}{4} = \frac{1}{4} \][/tex]
We need to find the root of \( 1 - \frac{3}{4} = 0 \):
[tex]\[ 1 - \frac{3}{4} = 0 \][/tex]
[tex]\[ y = \frac{1}{4} \][/tex]
Now, we substitute \( y = \frac{1}{4} \) into \( p(y) \):
[tex]\[ p\left(\frac{1}{4}\right) = \left(\frac{1}{4}\right)^3 - 4\left(\frac{1}{4}\right)^2 - 2\left(\frac{1}{4}\right) + 6 \][/tex]
[tex]\[ = \frac{1}{64} - 4\left(\frac{1}{16}\right) - 2\left(\frac{1}{4}\right) + 6 \][/tex]
[tex]\[ = \frac{1}{64} - \frac{4}{16} - \frac{2}{4} + 6 \][/tex]
[tex]\[ = \frac{1}{64} - \frac{1}{4} - \frac{1}{2} + 6 \][/tex]
[tex]\[ = \frac{1}{64} - \frac{16}{64} - \frac{32}{64} + \frac{384}{64} \][/tex]
[tex]\[ = \frac{1 - 16 - 32 + 384}{64} \][/tex]
[tex]\[ = \frac{337}{64} \][/tex]
So, the remainder when \( p(y) \) is divided by \( g(y) \) is \( \frac{337}{64} \).
To summarize:
(i) The remainder when \( 4y^3 - 12y^2 + 5y - 4 \) is divided by \( 2y - 1 \) is \(-4\).
(ii) The remainder when [tex]\( y^3 - 4y^2 - 2y + 6 \)[/tex] is divided by [tex]\( 1 - \frac{3}{4} \)[/tex] is [tex]\( \frac{337}{64} \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.