At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Q16: By the remainder theorem, find the remainder when [tex]$p(y)[tex]$[/tex] is divided by [tex]$[/tex]g(y)$[/tex].

(i) [tex]$p(y) = 4y^3 - 12y^2 + 5y - 4[tex]$[/tex] and [tex]$[/tex]g(y) = 2y - 1$[/tex]

(ii) [tex]$p(y) = y^3 - 4y^2 - 2y + 6[tex]$[/tex] and [tex]$[/tex]g(y) = y - \frac{3}{4}$[/tex]

Sagot :

Sure, let's solve these problems step by step using the remainder theorem.

Remainder Theorem: If a polynomial \( p(y) \) is divided by \( (y - c) \), the remainder is \( p(c) \).

### (i) \( p(y) = 4y^3 - 12y^2 + 5y - 4 \) and \( g(y) = 2y - 1 \)

To use the remainder theorem, we need to find the value of \( y \) that makes \( g(y) = 0 \). So we solve:
[tex]\[ 2y - 1 = 0 \][/tex]
[tex]\[ 2y = 1 \][/tex]
[tex]\[ y = \frac{1}{2} \][/tex]

Now, we substitute \( y = \frac{1}{2} \) into \( p(y) \):
[tex]\[ p\left(\frac{1}{2}\right) = 4\left(\frac{1}{2}\right)^3 - 12\left(\frac{1}{2}\right)^2 + 5\left(\frac{1}{2}\right) - 4 \][/tex]
[tex]\[ = 4\left(\frac{1}{8}\right) - 12\left(\frac{1}{4}\right) + 5\left(\frac{1}{2}\right) - 4 \][/tex]
[tex]\[ = \frac{4}{8} - \frac{12}{4} + \frac{5}{2} - 4 \][/tex]
[tex]\[ = \frac{1}{2} - 3 + \frac{5}{2} - 4 \][/tex]
[tex]\[ = \frac{1}{2} - 3 + 2.5 - 4 \][/tex]
[tex]\[ = \frac{1}{2} + 2.5 - 7 \][/tex]
[tex]\[ = \frac{1}{2} + 2.5 - 7 \][/tex]
[tex]\[ = \frac{1}{2} + 2.5 - 7 \][/tex]
[tex]\[ = \frac{1}{2} + 2.5 - 7 \][/tex]
[tex]\[ = 0.5 + 2.5 - 7 \][/tex]
[tex]\[ = 3 - 7 \][/tex]
[tex]\[ = -4 \][/tex]

So, the remainder when \( p(y) \) is divided by \( g(y) \) is \(-4\).

### (ii) \( p(y) = y^3 - 4y^2 - 2y + 6 \) and \( g(y) = 1 - \frac{3}{4} \)

First, simplify \( g(y) \):
[tex]\[ g(y) = 1 - \frac{3}{4} = \frac{4}{4} - \frac{3}{4} = \frac{1}{4} \][/tex]

We need to find the root of \( 1 - \frac{3}{4} = 0 \):
[tex]\[ 1 - \frac{3}{4} = 0 \][/tex]
[tex]\[ y = \frac{1}{4} \][/tex]

Now, we substitute \( y = \frac{1}{4} \) into \( p(y) \):
[tex]\[ p\left(\frac{1}{4}\right) = \left(\frac{1}{4}\right)^3 - 4\left(\frac{1}{4}\right)^2 - 2\left(\frac{1}{4}\right) + 6 \][/tex]
[tex]\[ = \frac{1}{64} - 4\left(\frac{1}{16}\right) - 2\left(\frac{1}{4}\right) + 6 \][/tex]
[tex]\[ = \frac{1}{64} - \frac{4}{16} - \frac{2}{4} + 6 \][/tex]
[tex]\[ = \frac{1}{64} - \frac{1}{4} - \frac{1}{2} + 6 \][/tex]
[tex]\[ = \frac{1}{64} - \frac{16}{64} - \frac{32}{64} + \frac{384}{64} \][/tex]
[tex]\[ = \frac{1 - 16 - 32 + 384}{64} \][/tex]
[tex]\[ = \frac{337}{64} \][/tex]

So, the remainder when \( p(y) \) is divided by \( g(y) \) is \( \frac{337}{64} \).

To summarize:
(i) The remainder when \( 4y^3 - 12y^2 + 5y - 4 \) is divided by \( 2y - 1 \) is \(-4\).
(ii) The remainder when [tex]\( y^3 - 4y^2 - 2y + 6 \)[/tex] is divided by [tex]\( 1 - \frac{3}{4} \)[/tex] is [tex]\( \frac{337}{64} \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.