Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sure, let's solve these problems step by step using the remainder theorem.
Remainder Theorem: If a polynomial \( p(y) \) is divided by \( (y - c) \), the remainder is \( p(c) \).
### (i) \( p(y) = 4y^3 - 12y^2 + 5y - 4 \) and \( g(y) = 2y - 1 \)
To use the remainder theorem, we need to find the value of \( y \) that makes \( g(y) = 0 \). So we solve:
[tex]\[ 2y - 1 = 0 \][/tex]
[tex]\[ 2y = 1 \][/tex]
[tex]\[ y = \frac{1}{2} \][/tex]
Now, we substitute \( y = \frac{1}{2} \) into \( p(y) \):
[tex]\[ p\left(\frac{1}{2}\right) = 4\left(\frac{1}{2}\right)^3 - 12\left(\frac{1}{2}\right)^2 + 5\left(\frac{1}{2}\right) - 4 \][/tex]
[tex]\[ = 4\left(\frac{1}{8}\right) - 12\left(\frac{1}{4}\right) + 5\left(\frac{1}{2}\right) - 4 \][/tex]
[tex]\[ = \frac{4}{8} - \frac{12}{4} + \frac{5}{2} - 4 \][/tex]
[tex]\[ = \frac{1}{2} - 3 + \frac{5}{2} - 4 \][/tex]
[tex]\[ = \frac{1}{2} - 3 + 2.5 - 4 \][/tex]
[tex]\[ = \frac{1}{2} + 2.5 - 7 \][/tex]
[tex]\[ = \frac{1}{2} + 2.5 - 7 \][/tex]
[tex]\[ = \frac{1}{2} + 2.5 - 7 \][/tex]
[tex]\[ = \frac{1}{2} + 2.5 - 7 \][/tex]
[tex]\[ = 0.5 + 2.5 - 7 \][/tex]
[tex]\[ = 3 - 7 \][/tex]
[tex]\[ = -4 \][/tex]
So, the remainder when \( p(y) \) is divided by \( g(y) \) is \(-4\).
### (ii) \( p(y) = y^3 - 4y^2 - 2y + 6 \) and \( g(y) = 1 - \frac{3}{4} \)
First, simplify \( g(y) \):
[tex]\[ g(y) = 1 - \frac{3}{4} = \frac{4}{4} - \frac{3}{4} = \frac{1}{4} \][/tex]
We need to find the root of \( 1 - \frac{3}{4} = 0 \):
[tex]\[ 1 - \frac{3}{4} = 0 \][/tex]
[tex]\[ y = \frac{1}{4} \][/tex]
Now, we substitute \( y = \frac{1}{4} \) into \( p(y) \):
[tex]\[ p\left(\frac{1}{4}\right) = \left(\frac{1}{4}\right)^3 - 4\left(\frac{1}{4}\right)^2 - 2\left(\frac{1}{4}\right) + 6 \][/tex]
[tex]\[ = \frac{1}{64} - 4\left(\frac{1}{16}\right) - 2\left(\frac{1}{4}\right) + 6 \][/tex]
[tex]\[ = \frac{1}{64} - \frac{4}{16} - \frac{2}{4} + 6 \][/tex]
[tex]\[ = \frac{1}{64} - \frac{1}{4} - \frac{1}{2} + 6 \][/tex]
[tex]\[ = \frac{1}{64} - \frac{16}{64} - \frac{32}{64} + \frac{384}{64} \][/tex]
[tex]\[ = \frac{1 - 16 - 32 + 384}{64} \][/tex]
[tex]\[ = \frac{337}{64} \][/tex]
So, the remainder when \( p(y) \) is divided by \( g(y) \) is \( \frac{337}{64} \).
To summarize:
(i) The remainder when \( 4y^3 - 12y^2 + 5y - 4 \) is divided by \( 2y - 1 \) is \(-4\).
(ii) The remainder when [tex]\( y^3 - 4y^2 - 2y + 6 \)[/tex] is divided by [tex]\( 1 - \frac{3}{4} \)[/tex] is [tex]\( \frac{337}{64} \)[/tex].
Remainder Theorem: If a polynomial \( p(y) \) is divided by \( (y - c) \), the remainder is \( p(c) \).
### (i) \( p(y) = 4y^3 - 12y^2 + 5y - 4 \) and \( g(y) = 2y - 1 \)
To use the remainder theorem, we need to find the value of \( y \) that makes \( g(y) = 0 \). So we solve:
[tex]\[ 2y - 1 = 0 \][/tex]
[tex]\[ 2y = 1 \][/tex]
[tex]\[ y = \frac{1}{2} \][/tex]
Now, we substitute \( y = \frac{1}{2} \) into \( p(y) \):
[tex]\[ p\left(\frac{1}{2}\right) = 4\left(\frac{1}{2}\right)^3 - 12\left(\frac{1}{2}\right)^2 + 5\left(\frac{1}{2}\right) - 4 \][/tex]
[tex]\[ = 4\left(\frac{1}{8}\right) - 12\left(\frac{1}{4}\right) + 5\left(\frac{1}{2}\right) - 4 \][/tex]
[tex]\[ = \frac{4}{8} - \frac{12}{4} + \frac{5}{2} - 4 \][/tex]
[tex]\[ = \frac{1}{2} - 3 + \frac{5}{2} - 4 \][/tex]
[tex]\[ = \frac{1}{2} - 3 + 2.5 - 4 \][/tex]
[tex]\[ = \frac{1}{2} + 2.5 - 7 \][/tex]
[tex]\[ = \frac{1}{2} + 2.5 - 7 \][/tex]
[tex]\[ = \frac{1}{2} + 2.5 - 7 \][/tex]
[tex]\[ = \frac{1}{2} + 2.5 - 7 \][/tex]
[tex]\[ = 0.5 + 2.5 - 7 \][/tex]
[tex]\[ = 3 - 7 \][/tex]
[tex]\[ = -4 \][/tex]
So, the remainder when \( p(y) \) is divided by \( g(y) \) is \(-4\).
### (ii) \( p(y) = y^3 - 4y^2 - 2y + 6 \) and \( g(y) = 1 - \frac{3}{4} \)
First, simplify \( g(y) \):
[tex]\[ g(y) = 1 - \frac{3}{4} = \frac{4}{4} - \frac{3}{4} = \frac{1}{4} \][/tex]
We need to find the root of \( 1 - \frac{3}{4} = 0 \):
[tex]\[ 1 - \frac{3}{4} = 0 \][/tex]
[tex]\[ y = \frac{1}{4} \][/tex]
Now, we substitute \( y = \frac{1}{4} \) into \( p(y) \):
[tex]\[ p\left(\frac{1}{4}\right) = \left(\frac{1}{4}\right)^3 - 4\left(\frac{1}{4}\right)^2 - 2\left(\frac{1}{4}\right) + 6 \][/tex]
[tex]\[ = \frac{1}{64} - 4\left(\frac{1}{16}\right) - 2\left(\frac{1}{4}\right) + 6 \][/tex]
[tex]\[ = \frac{1}{64} - \frac{4}{16} - \frac{2}{4} + 6 \][/tex]
[tex]\[ = \frac{1}{64} - \frac{1}{4} - \frac{1}{2} + 6 \][/tex]
[tex]\[ = \frac{1}{64} - \frac{16}{64} - \frac{32}{64} + \frac{384}{64} \][/tex]
[tex]\[ = \frac{1 - 16 - 32 + 384}{64} \][/tex]
[tex]\[ = \frac{337}{64} \][/tex]
So, the remainder when \( p(y) \) is divided by \( g(y) \) is \( \frac{337}{64} \).
To summarize:
(i) The remainder when \( 4y^3 - 12y^2 + 5y - 4 \) is divided by \( 2y - 1 \) is \(-4\).
(ii) The remainder when [tex]\( y^3 - 4y^2 - 2y + 6 \)[/tex] is divided by [tex]\( 1 - \frac{3}{4} \)[/tex] is [tex]\( \frac{337}{64} \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.